DOI QR코드

DOI QR Code

Characterization of Achlya americana and A. bisexualis (Saprolegniales, Oomycota) Isolated from Freshwater Environments in Korea

  • Choi, Young-Joon (Department of Biology, College of Natural Sciences, Kunsan National University) ;
  • Lee, Seo Hee (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Nguyen, Thuong T.T. (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Nam, Bora (Department of Biology, College of Natural Sciences, Kunsan National University) ;
  • Lee, Hyang Burm (Division of Food Technology, Biotechnology and Agrochemistry, College of Agriculture and Life Sciences, Chonnam National University)
  • Received : 2018.10.01
  • Accepted : 2018.11.07
  • Published : 2019.06.01

Abstract

Many members of the Saprolegniales (Oomycete) cause mycoses and disorders of fishes, of which Achlya and Saprolegnia are most ubiquitous genera worldwide. During a survey of the diversity of freshwater oomycetes in Korea, we collected seven isolates of Achlya, for which morphological and molecular phylogenetic analyses enabled them to identify as Achlya americana and Achlya bisexualis. In Korea, only a species of Achlya, A. prolifera, has been previously found to cause seedling rot on rice (Oryza sativa), but none of the two species have been reported yet. Importantly, A. bisexualis was isolated from a live fish, namely rice fish (Oryzias sinensis), as well as freshwater, and this is the first report of Achlya-causing mycoses on freshwater fishes in Korea. The presence of A. americana and A. bisexualis on live fish in Korea should be closely monitored, as considering the well-known broad infectivity of these species it has the potential to cause an important emerging disease on aquaculture industry.

Keywords

References

  1. Beakes GW, Thines M, Honda D. Straminipile "fungi" - taxonomy. eLS. Hoboken (NJ): John Wiley & Sons Ltd; 2015.
  2. Thines M, Kamoun S. Oomycete-plant coevolution: recent advances and future prospects. Curr Opin Plant Biol. 2010;13:427-433. https://doi.org/10.1016/j.pbi.2010.04.001
  3. Thines M, Choi YJ. Evolution, diversity, and taxonomy of the Peronosporaceae, with focus on the genus Peronospora. Phytopathology. 2016;106:6-18. https://doi.org/10.1094/PHYTO-05-15-0127-RVW
  4. Beakes GW, Honda D, Thines M. Systematics of the Straminipila: labyrinthulomycota, Hyphochytriomycota, and oomycota. In: McLaughlin DJ, Spatafora J, editors. Systematics and evolution. New York (NY): Springer; 2014. p. 39-97.
  5. Sparrow FK. The present status of classification in biflagellate fungi. In: Gareth-Jones EB, editor. Recent advances in aquatic mycology. London: Elek Science; 1976. p. 213-222.
  6. Sparrow Jr K. Aquatic phycomycetes. 2 ed. Arbor (MI): University of Michigan Press; 1960.
  7. Rocha SCO, Lopez-Lastra CC, Marano AV, et al. New phylogenetic insights into Saprolegniales (oomycota, Straminipila) based upon studies of specimens isolated from Brazil and Argentina. Mycol Prog. 2018;17:691-700. https://doi.org/10.1007/s11557-018-1381-x
  8. Riethmuller A, Weiss M, Oberwinkler F. Phylogenetic studies of Saprolegniomycetidae and related groups based on nuclear large subunit ribosomal DNA sequences. Can J Bot. 1999;77:1790-1800. https://doi.org/10.1139/cjb-77-12-1790
  9. Leclerc MC, Guillot J, Deville M. Taxonomic and phylogenetic analysis of Saprolegniaceae (Oomycetes) inferred from LSU rDNA and ITS sequence comparisons. Antonie Leeuwenhoek. 2000;77:369-377. https://doi.org/10.1023/A:1002601211295
  10. Spencer MA, Vick MC, Dick MW. Revision of Aplanopsis, Pythiopsis, and 'subcentric' Achlya species (Saprolegniaceae) using 18S rDNA and morphological data. Mycol Res. 2002;106:549-560. https://doi.org/10.1017/S0953756202005889
  11. Woo PT, Leatherland JF, Bruno DW. Fish diseases and disorders. Vol. 3. Wallingford (CT): CABI; 2011.
  12. Neish GA, Hughes GC. Fungal diseases of fishes: book 6. In: Snieszko SF, Axelrod HR, editors. Neptune City (NJ): TFH Publications Inc.; 1980.
  13. Cho W-D, Shin HD. List of plant diseases in Korea. 4th ed. Suwon: Korean Society of Plant Pathology; 2004.
  14. Choi YJ, Thines M. Host jumps and radiation, not co-divergence drives diversification of obligate pathogens. A case study in downy mildews and Asteraceae. PLOS One. 2015; 10:e0133655. https://doi.org/10.1371/journal.pone.0133655
  15. Choi YJ, Klosterman SJ, Kummer V, et al. Multilocus tree and species tree approaches toward resolving a complex clade of downy mildews (Straminipila, oomycota), including pathogens of beet and spinach. Mol Phylogenet Evol. 2015;86:24-34. https://doi.org/10.1016/j.ympev.2015.03.003
  16. Hulvey J, Telle S, Nigrelli L, et al. Salisapiliaceae - a new family of oomycetes from marsh grass litter of southeastern North America. Persoonia. 2010;25:109-116. https://doi.org/10.3767/003158510X551763
  17. Nigrelli L, Thines M. Tropical oomycetes in the German bight - climate warming or overlooked diversity? Fungal Ecol. 2013;6:152-160. https://doi.org/10.1016/j.funeco.2012.11.003
  18. Bachofer M. Molekularbiologische populationsstudien an Plasmopara halstedii, dem falschen mehltau der sonnenblume. Stuttgart: University of Hohenheim; 2004.
  19. Moncalvo JM, Wang HH, Hseu RS. Phylogenetic relationships in Ganoderma inferred from the internal transcribed spacers and 25s ribosomal DNA sequences. Mycologia. 1995;87:223-238. https://doi.org/10.1080/00275514.1995.12026524
  20. Choi YJ, Beakes G, Glockling S, et al. Towards a universal barcode of oomycetes - a comparison of the cox1 and cox2 loci. Mol Ecol Resour. 2015;15:1275-1288. https://doi.org/10.1111/1755-0998.12398
  21. Katoh K, Standley DM. MAFFT Multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772-780. https://doi.org/10.1093/molbev/mst010
  22. Katoh K, Toh H. Improved accuracy of multiple ncRNA alignment by incorporating structural information into a MAFFT-based framework. BMC Bioinformatics. 2008;9:212. https://doi.org/10.1186/1471-2105-9-212
  23. Tamura K, Stecher G, Peterson D, et al. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725-2729. https://doi.org/10.1093/molbev/mst197
  24. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  25. Silvestro D, Michalak I. raxmlGUI: a graphical front-end for RAxML. Org Divers Evol. 2012;12:335-337. https://doi.org/10.1007/s13127-011-0056-0
  26. Johnson TW. The genus Achlya: morphology and taxonomy. Arbor (MI): The University Press; London: Oxford University Press; 1956.
  27. Johnson T, Jr, Seymour R. Aquatic fungi of Iceland: Achlya americana. Am J Bot. 1974;61:244-252. https://doi.org/10.1002/j.1537-2197.1974.tb10772.x
  28. Coker WC. Other water molds from the soil. J Elisha Mitchell Sci Soc. 1927;42:207-226.
  29. Barksdale AW. Concerning the species, Achlya bisexualis. Mycologia. 1962;54:704-712. https://doi.org/10.1080/00275514.1962.12025051
  30. Khulbe R, Sati S. Studies on parasitic watermolds of Kumaun Himalaya; host range of Achlya americana Humphrey, on certain temperate fish. Mycoses. 2009;24:177-180. https://doi.org/10.1111/j.1439-0507.1981.tb01857.x
  31. Scott WW, O'Bier AH. Aquatic fungi associated with diseased fish and fish eggs. Prog Fish-Cult. 1962;24:3-15. https://doi.org/10.1577/1548-8659(1962)24[3:AFAWDF]2.0.CO;2
  32. Srivastava RC. Fungal parasites of certain fresh water fishes of India. Aquaculture. 1980;21:387-392. https://doi.org/10.1016/0044-8486(80)90074-5
  33. Czeczuga B, Kiziewicz B, Godlewska A. Zoosporic fungi growing on eggs of Coregonus lavaretus holsatus Thienemann, 1916 from Lake Wdzydze in Kaszuby. Pol J Environ Stud. 2004;13:355-359.
  34. Mastan S. Fungal infection in freshwater fishes of Andhra Pradesh, India. Afr J Biotechnol. 2015;14:530-534. https://doi.org/10.5897/AJB12.558
  35. Sati SC. Aquatic fungi parasitic on temperate fishes of Kumaun Himalaya, India. Mycoses. 1991;34:437-441. https://doi.org/10.1111/j.1439-0507.1991.tb00810.x
  36. Vishniac H, Nigrelli R. The ability of the Saprolegniaceae to parasitize platyfish. Zoologica. 1957;42:131-134.
  37. O'Bier AH. A study of the aquatic Phycomycetes associated with diseased fish and fish eggs. Blacksburg (VA): Virginia Polytechnic Institute; 1960.
  38. Lartseva LV, Dudka IA. Dependence of the development of Saprolegniaceae on the reproductive quality of the eggs of the sturgeon and white salmon. Mikol Fitopatol. 1990;24:112-116.
  39. Panchai K, Hanjavanit C, Kitacharoen N. Characteristics of Achlya bisexualis isolated from eggs of Nile tilapia (Oreochromis niloticus). KKU Res J. 2007;12:195-202.
  40. Panchai K, Hanjavanit C, Rujinanont N, et al. Freshwater oomycete isolated from net cage cultures of Oreochromis niloticus with water mold infection in the Nam Phong river, Khon Kaen province Thailand. AACL Bioflux. 2014;7:529-542.
  41. Sosa ER, Landsberg JH, Kiryu Y, et al. Pathogenicity studies with the fungi Aphanomyces invadans, Achlya bisexualis, and Phialemonium dimorphosporum: induction of skin ulcers in striped mullet. J Aquat Anim Health. 2007;19:41-48. https://doi.org/10.1577/H06-013.1
  42. Raper JR. Sexual hormones in Achlya. Am Sci. 1951;39:110-130.
  43. Barksdale AW. Sexual hormones of Achlya and other fungi. Science. 1969;166:831-837. https://doi.org/10.1126/science.166.3907.831
  44. McMorris TC. Sex hormones of the aquatic fungusAchlya. Lipids. 1978;13:716-722. https://doi.org/10.1007/BF02533751
  45. McMorris TC, Barksdale AW. Isolation of a sex hormone from the water mould Achlya bisexualis. Nature. 1967;215:320-321. https://doi.org/10.1038/215320a0
  46. Thomas D, McMorris TC. Allomonal functions of steroid hormone, antheridiol, in water mold Achlya. J Chem Ecol. 1987;13:1131-1137. https://doi.org/10.1007/BF01020543
  47. Du X, Mullins JT. Glucan 1, 3-b-Glucosidase activities of Achlya bisexualis: synthesis and properties. Mycologia. 1999;91:353-358. https://doi.org/10.2307/3761381
  48. Steciow M. Actividad enzimatica de algunas Saprolegniales (oomycetes). Bol Micol. 1993;8:85-89. https://doi.org/10.22370/bolmicol.1993.8.0.1162
  49. Lee J, Mullins JT. Cytoplasmic water-soluble b-glucans in Achlya: response to nutrient limitation. Mycologia. 1994;86:235-241. https://doi.org/10.2307/3760642
  50. Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquat Toxicol. 2004;66:319-329. https://doi.org/10.1016/j.aquatox.2003.09.008
  51. Robideau GP, de Cock AW, Coffey MD, et al. DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour. 2011;11:1002-1011. https://doi.org/10.1111/j.1755-0998.2011.03041.x

Cited by

  1. Phytopythium and Pythium Species (Oomycota) Isolated from Freshwater Environments of Korea vol.47, pp.3, 2019, https://doi.org/10.1080/12298093.2019.1625174
  2. Pezizomycotina (Ascomycota) Fungi Isolated from Freshwater Environments of Korea: Cladorrhinum australe, Curvularia muehlenbeckiae, Curvularia pseudobrachyspora, and Diaporthe longicolla vol.48, pp.1, 2019, https://doi.org/10.4489/kjm.20200003
  3. Veronaea aquatica sp. nov. (Herpotrichiellaceae, Chaetothyriales, Eurotiomycetes) from submerged bamboo in China vol.9, 2019, https://doi.org/10.3897/bdj.9.e64505
  4. Efficacy of acriflavin chloride and Melaleuca alternifolia extract against Saprolegnia parasitica infection in Pterophyllum scalare vol.12, pp.3, 2019, https://doi.org/10.15421/022165