• Title/Summary/Keyword: oocyte development

Search Result 615, Processing Time 0.026 seconds

Effect of Addition of ESCM and ESM during In Vitro Maturation on In Vitro Development of Porcine Follicular Oocytes (돼지 난포란으로부터 배반포의 체외생산에 있어서 체외성숙시 기초배양액에 ESCM과 ESM의 첨가효과)

  • Kim, Seok-Gi;Park, Hum-Dai
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.205-211
    • /
    • 2019
  • In this study, we investigated the possibility of using mouse embryonic stem cell conditioned medium (ESCM) and embryonic stem cell medium (ESM) for in vitro maturation in the efficient in vitro production of blastocysts from porcine follicular oocyte. Depending on the concentration of supplement of ESCM added to the NCSU-23 solution did not affect 2-cell development rates and blastocysts development. However, in particular, the survival rate (10 days of culture) of blastocyst was significantly higher than that of the control group as the additive concentration (30%) increased (p < 0.05). The survival rate of blastocysts showed a similar tendency even with addition of ESM (30%) alone. On the other hand, the duration of the addition of these additives during IVM (0-44 h) was that the IVM I period (0-22 h) were more effective than the IVM II period (22-44 h). Thus, the effect of these additives is probably due to the combination of the various physiologically active substances of ESCM or the appropriate amino acids and vitamins of ESM. In particular, these additives were more effective during the first half (IVM I) of in vitro maturation. In summary, optimization of ESCM or ESM supplementation may improve in vitro maturation of porcine oocyte and affect developmental competency. Therefore, if more efficient methods of adding ESCM or ESM to basal culture medium can be developed during in vitro maturation of porcine follicle oocytes, high quality blastocysts will be developed from low porcine follicular oocyte compared to other domestic animals.

In Vitro Maturation of Porcine Oocytes in a Dry Incubator without $CO_2$ Gas Supplement

  • Park, Kwang-Wook
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.141-145
    • /
    • 2012
  • The present study was conducted to develop a simple method for porcine oocyte maturation without $CO_2$ regulation. In experiment 1, we evaluated that the effect of $CO_2$ non-supplement on porcine oocyte maturation. Cumulusoocyte complexes (COCs) were collected from 2~6 mm follicles and divided into three groups (Control, tube-$CO_2$, and tube-non-$CO_2$). For control, COCs were cultured in 4-well multidish in a $CO_2$ incubator. For tube-$CO_2$, COCs were cultured in a round-bottom tube in a $CO_2$ incubator, and for tube-non-$CO_2$, COCs were cultured in a round-bottom tube sealed tightly without $CO_2$ supplement in a dry incubator. The proportion of oocytes reached to metaphase II (M-II) was not significantly different among three groups (87.9% to 91.4%). In experiment 2, we evaluated the effect of $CO_2$ non-supplement during oocyte maturation on development of embryos. Oocytes with a polar body were divided into two groups (Control and tube-non-$CO_2$) and applied 1.1 kV/cm or 1.2 kV/cm voltages for parthenogenetic activation. After activation, embryos were cultured for 6 days and examined the development. The proportion of embryos cleaved was not significantly different among treatment (86.3% to 91.5%). The proportion of embryo reached to blastocyst stage was not significantly different among treatment (13.9% to 25.2%). The cell number of blastocysts was not significantly different among treatment (29.0 to 32.4). In conclusion, oocytes cultured in a dry incubator without $CO_2$ supplement have enough competence to development after parthenogenetic activation. These results would be useful for transporting oocytes or embryos a long distance.

Oocyte maturation under a biophoton generator improves preimplantation development of pig embryos derived by parthenogenesis and somatic cell nuclear transfer

  • Lee, DJoohyeong;Shin, Hyeji;Lee, Wonyou;Lee, Seung Tae;Lee, Geun-Shik;Hyun, Sang-Hwan;Lee, Eunsong
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • This study was conducted to determine the effects of biophoton treatment during in vitro maturation (IVM) and/or in vitro culture (IVC) on oocyte maturation and embryonic development in pigs. An apparatus capable of generating homogeneous biophoton energy emissions was placed in an incubator. Initially, immature pig oocytes were matured in the biophoton-equipped incubator in medium 199 supplemented with cysteine, epidermal growth factor, insulin, and gonadotrophic hormones for 22 h, after which they were matured in hormone-free medium for an additional 22 hr. Next, IVM oocytes were induced for parthenogenesis (PA) or provided as cytoplasts for somatic cell nuclear transfer (SCNT). Treatment of oocytes with biophoton energy during IVM did not improve cumulus cell expansion, nuclear maturation, intraoocyte glutathione content, or mitochondrial distribution of oocytes. However, biophoton-treated oocytes showed higher (p < 0.05) blastocyst formation after PA than that in untreated oocytes (50.7% vs. 42.7%). In an additional experiment, SCNT embryos produced from biophoton-treated oocytes showed a greater (p < 0.05) number of cells in blastocysts (52.6 vs. 43.9) than that in untreated oocytes. Taken together, our results demonstrate that biophoton treatment during IVM improves developmental competence of PA- and SCNT-derived embryos.

Adverse effect of IL-6 on the in vitro maturation of porcine oocytes

  • Yi, Young-Joo;Adikari, Adikari Arachchige Dilki Indrachapa;Moon, Seung-Tae;Heo, Jung-Min;Lee, Sang-Myeong
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.607-615
    • /
    • 2021
  • Cytokines are protein mediators that possess the ability to assist cell-to-cell communication in immune system-related activities. In general, pathogen endotoxins activate the release of inflammatory mediators, and with time, there is an increase in the cytokine levels in the body. Interleukin (IL)-6 mediates the acute-phase inflammatory response, and elevated IL-6 levels have been reported in peritoneal fluids of women with pelvic inflammation and endometriosis, thereby associating it with oocyte quality and infertility. To overcome subfertility or infertility in humans and animals, the present study was done to examine the effect of recombinant IL-6 on porcine oocytes matured in vitro and subsequently to determine the fertilization rate and embryo development. Porcine oocytes were incubated with varying concentrations of IL-6 (0 - 2 ㎍·mL-1) for 44 h followed by in vitro fertilization and culturing of the oocytes. The oocytes or embryos were fixed with 3.7% paraformaldehyde (PFA) and stained with fluorescence dyes, and the meiotic spindle, chromosome organization, fertilization status and embryo development were subsequently assessed under a fluorescence microscope. We observed induction of an abnormal meiotic spindle alignment in the oocytes incubated with IL-6 compared to the control oocytes incubated without IL-6. Moreover, significantly decreased fertilization rates and embryo development were observed for oocytes incubated with IL-6 (p < 0.05). Thus, an increased IL-6 level during oocyte maturation could be associated with fertilization failure due to an aberrant chromosomal alignment and a disruption of the cortical granules. Taken together, our results indicate that successful assisted reproduction can be achieved by controlling the levels of inflammatory cytokines.

The Effects of Resveratrol on Oocyte Maturation and Preimplantation Embryo Development

  • Kwak, Seong-Sung;Hyun, Sang-Hwan
    • Journal of Embryo Transfer
    • /
    • v.27 no.2
    • /
    • pp.71-80
    • /
    • 2012
  • Biotechnologies for cloning animals and in vitro embryo production have the potential to produce biomedical models for various researches. Especially, pigs are a suitable model for xenotransplantation, transgenic production and various areas of reproductive research due to its physiological similarities to human. However, utilization of in vitro-produced embryos for transfer remains limited. Despite improvement over past few decades, obstacles associated with the production of good quality embryos in vitro still exist which limit the efficiency of cloning. One of major problems includes improper in vitro maturation (IVM) and culture (IVC). Oxidative stress caused from in vitro culture conditions contributes to inadequate IVM and IVC which leads to poor developmental competence of oocytes, failure of fertilization and embryo development. To reduce the oxidative stress, various antioxidants have been used to IVM and IVC system. However, limited information is available on the effects of resveratrol on livestock reproductions. Resveratrol is a polyphenolic natural product and well known as an antioxidant in foods and beverages (e.g. in grapes and red wine). Resveratrol is known to be cardioprotective, anticarcinogenic, anti-inflammatory, antioxidant and antiapoptotic. This paper will review the effects of resveratrol on in vitro maturation of oocytes and embryo development.

Mature and Bi-Sexual Phase Gonad Occurrence in Cultured Red Spotted Grouper, Epinephelus akaara

  • Hwang, In Joon;Min, Byung Hwa;Baek, Hea Ja
    • Development and Reproduction
    • /
    • v.24 no.3
    • /
    • pp.225-230
    • /
    • 2020
  • This study reports the presence of mature and bi-sexual phase gonads in red spotted grouper, Epinephelus akaara after less than a year of cultivation in a commercial indoor tank and a net cage. In December 2018, juveniles were placed in an indoor tank and cultured for five months. In June 2019, the fish were transferred to a net cage and cultured until September. The rearing temperatures ranged from 19.86℃-24.65℃ in the indoor tank and 21.86℃-27.65℃ in the net cage. During the net cage culture period, specimens were randomly selected for histological gonad examination. The highest gonadosomatic index (GSI) value was measured in July (3.38±2.53), and dramatically decreased in August (0.44±0.21) and September (0.42±0.30). In July, some mature fish showed signs of vitellogenic stage oocyte development (vitellogenic and oil droplet stage oocytes), but immature fish were in an early developmental stage containing peri-nucleolus stage (PNS) oocytes. Bi-sexual phase gonads containing spermatocytes and spermatids were observed in the lumen and several PNS oocytes. By August and September, most specimens showed early-stage ovary development. However, mature testis (in August) and bi-sexual phase gonads (in September) were also observed. These results provide evidence for early puberty and hermaphroditism in the red spotted grouper.

Differentially Expressed mRNA Profiles between Immature Germinal Vesicle(GV) and Mature Metaphase II(MII) Mouse Oocytes (미성숙 난자와 성숙 난자에서 서로 다르게 발현하는 유전자에 관한 연구)

  • Yoon Se-Jin;Chung Hyung-Min;Cha Kwang-Yul;Kim Nam-Hyung;Lee Kyung-Ah
    • Development and Reproduction
    • /
    • v.8 no.1
    • /
    • pp.35-42
    • /
    • 2004
  • Oocyte maturation refers to the process that prophase I arrested germinal vesicle(GV) drives the progression of meiosis to metaphase II(MII) to have the capacity for fertilization and embryo development. To better understand the molecular mechanism(s) involved in oocyte maturation, we identified differentially expressed genes(DEGs) between GV and MII mouse oocytes using a new innovative annealing control primer (ACP) technology. Using 20 ACPs, we successfully cloned 32 DEGs between GV and Mll oocytes, and 26 out of these 32 DEGs were functionally known genes. Four genes including Pscd2 were GV-specific, 10 genes including PKD2 and CSN3 were highly expressed in GV oocytes(GV-selective), and 12 genes including Diva were highly expressed in MII oocytes (MII-selective). Ail of the genes identified in this study were first reported in the oocyte expression using ACP system and especially, we could characterize the existence of PKD-CSW signaling pathwayin the mouse oocytes. Results of the present study would provide insight for studying molecular mechanisms regulating oocyte maturation.

  • PDF

Effects of ${\beta}$-Mercaptoethanol on the Growth of Preantral Follicles and the Maturation of Intrafollicular Oocytes

  • Gong, Seung Pyo;Lim, Jeong Mook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This study was undertaken to evaluate how ${\beta}$-mercaptoethanol (bME), an exogenous antioxidant, interacts with preantral follicles cultured in vitro. Mouse primary or secondary follicles were cultured in glutathione (GSH)-free or GSH-containing medium supplemented with bME of various concentrations, and the growth of preantral follicles, the maturation of intrafollicular oocytes and preimplantation development after parthenogenesis were monitored. In experiment 1, 0, 25, 50 or 100 ${\mu}M$ bME was added to culture medium supplemented with 100 ${\mu}M$ GSH or not. When secondary follicles were cultured in GSH-free medium, no significant change in follicle growth was detected after bME addition. However, exposure to bME in the presence of GSH significantly inhibited both follicle growth and oocyte maturation. Such detrimental effect became prominent in primary follicles and bME strongly inhibited follicle growth in the absence of GSH. In conclusion, there are stage-dependent effects of bME on follicle growth and oocyte maturation, and selective use of antioxidants contributes to establishing an efficient follicle culture system.

Influence of Autophagy Induction after Hormone Treatment on Oocytes Maturation of Porcine

  • Kim, Sang Hwan;Yoon, Jong Taek
    • Journal of Embryo Transfer
    • /
    • v.33 no.4
    • /
    • pp.271-280
    • /
    • 2018
  • Here, we evaluated the mode of programmed cell death during porcine oocyte maturation by comparing the two major pathways associated with programmed cell death, apoptosis (type I), and autophagy (type II). We investigated the expression and localization of major genes involved in autophagy and apoptosis at mRNA and protein levels. Furthermore, the effect of hormonal stimulation on autophagy and apoptosis was analyzed. We found that the activity of autophagy-associated genes was increased in the cumulus-oocyte complexes (COCs) following follicle-stimulating hormone (FSH) treatment, while the addition of luteinizing hormone (LH) reversed this effect. The expression of proteins associated with autophagy was the highest in FSH-treated COCs. On the other hand, caspase-3 protein level was maximum in COCs cultured with LH. The treatment with rapamycin resulted in the effect similar to that observed with FSH treatment and increased autophagy activity. Thus, hormonal stimulation of pig oocytes resulted in distinct patterns of maturation. The high-quality oocytes majorly relied on the type II pathway (autophagy), while the type I pathway (apoptosis) was more prominent among poor-quality oocytes. Further investigation of this distinction may allow the development of techniques to produce high-quality oocytes in porcine in vitro fertilization.

In Vitro Sex Steroid Metabolism in Red Spotted Grouper, Epinephelus akaara during Oocyte Maturation

  • Hwang, In Joon;Baek, Hea Ja
    • Development and Reproduction
    • /
    • v.25 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • We studied steroid metabolites produced from red-spotted grouper ovarian follicles during maturation. Oocytes with 350-500 ㎛ diameter were in vitro incubated in the presence of [3H] 17α-hydroxyprogesterone as a precursor. Steroid metabolites were extracted from incubated media and oocytes. The extracts were separated and identified using thin layer chromatography, high performance liquid chromatography and gas chromatography-mass spectrometry. The identified metabolites were androstenedione (A4), testosterone (T) and estrone (E1). The metabolites of A4 was dominant in all size of oocytes and it was the highest in 480 ㎛ diameter oocytes. The metabolites of two progestins, 17α,20β-dihydroxy-4-pregnen-3-one and 17α,20α-dihydroxy-4-pregnen-3-one were detected in the oocytes less than 480 ㎛ diameter although they were not identified definitely. In the oocytes of 480 ㎛ diameter, metabolite of progestin was the highest, and germinal vesicle (GV) was still in the middle of cytoplasm. In the oocytes of 500 ㎛ diameter, GV was began to migrate and the major metabolites were A4 and E1. The metabolite of E1 was detected in all size of oocytes and it was higher than that of E2. These results suggest that oocytes of 480 ㎛ diameter are the transitional stage involving steroidogenic shift to final oocyte maturation and potential function of E1 during maturation process.