• 제목/요약/키워드: online motion planning

검색결과 5건 처리시간 0.016초

Kinodynamic Motion Planning with Artificial Wavefront Propagation

  • Ogay, Dmitriy;Kim, Eun-Gyung
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.274-281
    • /
    • 2013
  • In this study, we consider the challenges in motion planning for automated driving systems. Most of the existing online motion-planning algorithms, which take dynamics into account, find it difficult to operate in an environment with narrow passages. Some of the existing algorithms overcome this by offline preprocessing if environment is known. In this work an online algorithm for motion planning with dynamics in an unknown cluttered environment with narrow passages is presented. It utilizes an idea of hybrid planning with sampling- and discretization-based motion planners, which run simultaneously in a full configuration space and a derived reduced space. The proposed algorithm has been implemented and tested with a real autonomous vehicle. It provides significant improvements in computational time performance over basic planning algorithms and allows the generation of smoother paths than those generated by the recently developed hybrid motion planners.

샘플링 기법의 보완을 통한 RRT* 기반 온라인 이동 계획의 성능 개선 (Improvement of Online Motion Planning based on RRT* by Modification of the Sampling Method)

  • 이희범;곽휘권;김준원;이춘우;김현진
    • 제어로봇시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.192-198
    • /
    • 2016
  • Motion planning problem is still one of the important issues in robotic applications. In many real-time motion planning problems, it is advisable to find a feasible solution quickly and improve the found solution toward the optimal one before the previously-arranged motion plan ends. For such reasons, sampling-based approaches are becoming popular for real-time application. Especially the use of a rapidly exploring random $tree^*$ ($RRT^*$) algorithm is attractive in real-time application, because it is possible to approach an optimal solution by iterating itself. This paper presents a modified version of informed $RRT^*$ which is an extended version of $RRT^*$ to increase the rate of convergence to optimal solution by improving the sampling method of $RRT^*$. In online motion planning, the robot plans a path while simultaneously moving along the planned path. Therefore, the part of the path near the robot is less likely to be sampled extensively. For a better solution in online motion planning, we modified the sampling method of informed $RRT^*$ by combining with the sampling method to improve the path nearby robot. With comparison among basic $RRT^*$, informed $RRT^*$ and the proposed $RRT^*$ in online motion planning, the proposed $RRT^*$ showed the best result by representing the closest solution to optimum.

Nonlinear intelligent control systems subjected to earthquakes by fuzzy tracking theory

  • Z.Y. Chen;Y.M. Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • 제33권4호
    • /
    • pp.291-300
    • /
    • 2024
  • Uncertainty of the model, system delay and drive dynamics can be considered as normal uncertainties, and the main source of uncertainty in the seismic control system is related to the nature of the simulated seismic error. In this case, optimizing the management strategy for one particular seismic record will not yield the best results for another. In this article, we propose a framework for online management of active structural management systems with seismic uncertainty. For this purpose, the concept of reinforcement learning is used for online optimization of active crowd management software. The controller consists of a differential controller, an unplanned gain ratio, the gain of which is enhanced using an online reinforcement learning algorithm. In addition, the proposed controller includes a dynamic status forecaster to solve the delay problem. To evaluate the performance of the proposed controllers, thousands of ground motion data sets were processed and grouped according to their spectrum using fuzzy clustering techniques with spatial hazard estimation. Finally, the controller is implemented in a laboratory scale configuration and its operation is simulated on a vibration table using cluster location and some actual seismic data. The test results show that the proposed controller effectively withstands strong seismic interference with delay. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results is believed to achieved in the near future by the ongoing development of AI and control theory.

Dosimetric Effects of Air Pocket during Magnetic Resonance-Guided Adaptive Radiation Therapy for Pancreatic Cancer

  • Jin, Hyeongmin;Kim, Dong-Yun;Park, Jong Min;Kang, Hyun-Cheol;Chie, Eui Kyu;An, Hyun Joon
    • 한국의학물리학회지:의학물리
    • /
    • 제30권4호
    • /
    • pp.104-111
    • /
    • 2019
  • Purpose: Online magnetic resonance-guided adaptive radiotherapy (MRgART), an emerging technique, is used to address the change in anatomical structures, such as treatment target region, during the treatment period. However, the electron density map used for dose calculation differs from that for daily treatment, owing to the variation in organ location and, notably, air pockets. In this study, we evaluate the dosimetric effect of electron density override on air pockets during online ART for pancreatic cancer cases. Methods: Five pancreatic cancer patients, who were treated with MRgART at the Seoul National University Hospital, were enrolled in the study. Intensity modulated radiation therapy plans were generated for each patient with 60Co beams on a ViewrayTM system, with a 45 Gy prescription dose for stereotactic body radiation therapy. During the treatment, the electron density map was modified based on the daily MR image. We recalculated the dose distribution on the plan, and the dosimetric parameters were obtained from the dose volume histograms of the planning target volume (PTV) and organs at risk. Results: The average dose difference in the PTV was 0.86Gy, and the observed difference at the maximum dose was up to 2.07 Gy. The variation in air pockets during treatment resulted in an under- or overdose in the PTV. Conclusions: We recommend the re-contouring of the air pockets to deliver an accurate radiation dose to the target in MRgART, even though it is a time-consuming method.

사차원전산화단층촬영과 호흡연동 직각 Kilovolt 준비 영상을 이용한 간 종양의 움직임 분석 (Evaluation of the Positional Uncertainty of a Liver Tumor using 4-Dimensional Computed Tomography and Gated Orthogonal Kilovolt Setup Images)

  • 주상규;홍채선;박희철;안종호;신은혁;신정석;김진성;한영이;임도훈;최두호
    • Radiation Oncology Journal
    • /
    • 제28권3호
    • /
    • pp.155-165
    • /
    • 2010
  • 목 적: 4-dimensional computed tomography (4DCT) 영상과 on board imaging (OBI) 및 real time position management (RPM) 장치로 매 회 치료 시마다 얻은 호흡연동 직각 kilovolt (KV) 준비 영상(gated orthogonal kilovolt setup image)을 이용해 간암 환자를 치료하는 동안 발생하는 종양 위치의 불확실성을 평가하고자 했다. 대상 및 방법: 3차원입체조형치료가 예정된 20명의 간암 환자를 대상으로 RPM과 전산화단층촬영모의치료기를 이용해 치료계획용 4DCT를 시행했다. 표적 근처에 위치한 간동맥화학색전술 후 집적된 리피오돌(lipiodol) 혹은 횡격막을 종양의 위치 변이를 측정하는 표지자로 선택했다. 표지자의 위치 차이를 이용해 온라인 분할간 및 분할중 내부 장기 변이와 움직임 진폭을 측정했다. 측정된 자료의 정량적 평가를 위해 통계 분석을 실시했다. 결 과: 20명 환자로부터 측정된 표지자의 분할간변이의 중앙값은 X (transaxial), Y (superior-inferior), Z (anterior-posterior) 축에서 각각 0.00 cm (범위, -0.50~0.90 cm), 0.00 cm (범위, -2.4~1.60 cm), 0.00 cm (범위, -1.10~0.50 cm) 였다. 4명의 환자에서 X, Y, Z축 중 하나 이상에서 0.5 cm를 초과하는 변이가 관찰되었다. 4DCT와 호흡연동 직각 준비 영상으로부터 얻은 표적의 움직임 진폭의 차이는 X, Y, Z 축에서 각각 중앙값이 -0.05 cm (범위, -0.83~0.60 cm), -0.15 cm (범위, -2.58~1.18 cm), -0.02 cm (범위, -1.37~0.59 cm) 였다. 두 영상간 표적의 움직임 진폭 차이가 1 cm를 초과하는 환자가 Y축 방향으로 3명 관찰되었으며, 0.5 cm 초과 1 cm 미만의 차이를 보이는 환자도 Y축과 Z축 방향을 합쳐 5명 관찰되었다. 분할중 표지자 위치 변이의 중앙값은 X, Y, Z축에서 각각 0.00 cm (범위, -0.30~0.40 cm), -0.03 cm (범위, -1.14~0.50 cm), 0.05 cm (범위, -0.30~0.50 cm)였으며 2명의 환자에서 1 cm를 초과하는 변이가 Y축 방향으로 관찰되었다. 결 론: 4DCT와 호흡연동 직각 KV 준비 영상으로 얻은 표지자의 분할간, 분할중 및 움직임 진폭에서 큰 변이가 관찰되었다.