• Title/Summary/Keyword: online information search

Search Result 494, Processing Time 0.041 seconds

Clickstream Big Data Mining for Demographics based Digital Marketing (인구통계특성 기반 디지털 마케팅을 위한 클릭스트림 빅데이터 마이닝)

  • Park, Jiae;Cho, Yoonho
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.143-163
    • /
    • 2016
  • The demographics of Internet users are the most basic and important sources for target marketing or personalized advertisements on the digital marketing channels which include email, mobile, and social media. However, it gradually has become difficult to collect the demographics of Internet users because their activities are anonymous in many cases. Although the marketing department is able to get the demographics using online or offline surveys, these approaches are very expensive, long processes, and likely to include false statements. Clickstream data is the recording an Internet user leaves behind while visiting websites. As the user clicks anywhere in the webpage, the activity is logged in semi-structured website log files. Such data allows us to see what pages users visited, how long they stayed there, how often they visited, when they usually visited, which site they prefer, what keywords they used to find the site, whether they purchased any, and so forth. For such a reason, some researchers tried to guess the demographics of Internet users by using their clickstream data. They derived various independent variables likely to be correlated to the demographics. The variables include search keyword, frequency and intensity for time, day and month, variety of websites visited, text information for web pages visited, etc. The demographic attributes to predict are also diverse according to the paper, and cover gender, age, job, location, income, education, marital status, presence of children. A variety of data mining methods, such as LSA, SVM, decision tree, neural network, logistic regression, and k-nearest neighbors, were used for prediction model building. However, this research has not yet identified which data mining method is appropriate to predict each demographic variable. Moreover, it is required to review independent variables studied so far and combine them as needed, and evaluate them for building the best prediction model. The objective of this study is to choose clickstream attributes mostly likely to be correlated to the demographics from the results of previous research, and then to identify which data mining method is fitting to predict each demographic attribute. Among the demographic attributes, this paper focus on predicting gender, age, marital status, residence, and job. And from the results of previous research, 64 clickstream attributes are applied to predict the demographic attributes. The overall process of predictive model building is compose of 4 steps. In the first step, we create user profiles which include 64 clickstream attributes and 5 demographic attributes. The second step performs the dimension reduction of clickstream variables to solve the curse of dimensionality and overfitting problem. We utilize three approaches which are based on decision tree, PCA, and cluster analysis. We build alternative predictive models for each demographic variable in the third step. SVM, neural network, and logistic regression are used for modeling. The last step evaluates the alternative models in view of model accuracy and selects the best model. For the experiments, we used clickstream data which represents 5 demographics and 16,962,705 online activities for 5,000 Internet users. IBM SPSS Modeler 17.0 was used for our prediction process, and the 5-fold cross validation was conducted to enhance the reliability of our experiments. As the experimental results, we can verify that there are a specific data mining method well-suited for each demographic variable. For example, age prediction is best performed when using the decision tree based dimension reduction and neural network whereas the prediction of gender and marital status is the most accurate by applying SVM without dimension reduction. We conclude that the online behaviors of the Internet users, captured from the clickstream data analysis, could be well used to predict their demographics, thereby being utilized to the digital marketing.

Impact of Semantic Characteristics on Perceived Helpfulness of Online Reviews (온라인 상품평의 내용적 특성이 소비자의 인지된 유용성에 미치는 영향)

  • Park, Yoon-Joo;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.29-44
    • /
    • 2017
  • In Internet commerce, consumers are heavily influenced by product reviews written by other users who have already purchased the product. However, as the product reviews accumulate, it takes a lot of time and effort for consumers to individually check the massive number of product reviews. Moreover, product reviews that are written carelessly actually inconvenience consumers. Thus many online vendors provide mechanisms to identify reviews that customers perceive as most helpful (Cao et al. 2011; Mudambi and Schuff 2010). For example, some online retailers, such as Amazon.com and TripAdvisor, allow users to rate the helpfulness of each review, and use this feedback information to rank and re-order them. However, many reviews have only a few feedbacks or no feedback at all, thus making it hard to identify their helpfulness. Also, it takes time to accumulate feedbacks, thus the newly authored reviews do not have enough ones. For example, only 20% of the reviews in Amazon Review Dataset (Mcauley and Leskovec, 2013) have more than 5 reviews (Yan et al, 2014). The purpose of this study is to analyze the factors affecting the usefulness of online product reviews and to derive a forecasting model that selectively provides product reviews that can be helpful to consumers. In order to do this, we extracted the various linguistic, psychological, and perceptual elements included in product reviews by using text-mining techniques and identifying the determinants among these elements that affect the usability of product reviews. In particular, considering that the characteristics of the product reviews and determinants of usability for apparel products (which are experiential products) and electronic products (which are search goods) can differ, the characteristics of the product reviews were compared within each product group and the determinants were established for each. This study used 7,498 apparel product reviews and 106,962 electronic product reviews from Amazon.com. In order to understand a review text, we first extract linguistic and psychological characteristics from review texts such as a word count, the level of emotional tone and analytical thinking embedded in review text using widely adopted text analysis software LIWC (Linguistic Inquiry and Word Count). After then, we explore the descriptive statistics of review text for each category and statistically compare their differences using t-test. Lastly, we regression analysis using the data mining software RapidMiner to find out determinant factors. As a result of comparing and analyzing product review characteristics of electronic products and apparel products, it was found that reviewers used more words as well as longer sentences when writing product reviews for electronic products. As for the content characteristics of the product reviews, it was found that these reviews included many analytic words, carried more clout, and related to the cognitive processes (CogProc) more so than the apparel product reviews, in addition to including many words expressing negative emotions (NegEmo). On the other hand, the apparel product reviews included more personal, authentic, positive emotions (PosEmo) and perceptual processes (Percept) compared to the electronic product reviews. Next, we analyzed the determinants toward the usefulness of the product reviews between the two product groups. As a result, it was found that product reviews with high product ratings from reviewers in both product groups that were perceived as being useful contained a larger number of total words, many expressions involving perceptual processes, and fewer negative emotions. In addition, apparel product reviews with a large number of comparative expressions, a low expertise index, and concise content with fewer words in each sentence were perceived to be useful. In the case of electronic product reviews, those that were analytical with a high expertise index, along with containing many authentic expressions, cognitive processes, and positive emotions (PosEmo) were perceived to be useful. These findings are expected to help consumers effectively identify useful product reviews in the future.

Research on Usability of Mobile Food Delivery Application: Focusing on Korean Application and Chinese Application (모바일 배달 애플리케이션 사용성 평가 연구: 한국(배달의민족)과 중국(어러머)을 중심으로)

  • Yang Tian;Eunkyung Kweon;Sangmi Chai
    • Information Systems Review
    • /
    • v.20 no.1
    • /
    • pp.1-16
    • /
    • 2018
  • The development and generalization of the Internet increased the popularity of food delivery service applications in Korea. The food delivery market based on online-to-offline service is growing rapidly. This study compares the usability of Korean food delivery service application between that of Chinese food delivery service application. This study suggests improvement points for Korean food delivery service applications. To conduct this study, we explore the status of various food delivery service applications and conduct interviews and surveys based on the honeycomb model developed by Peter Morville. This study obtained the following results. First, all restaurants participating in the Korean food delivery service must be able to accept order through the application. Second, the shopping cart function must be able to accept order of all restaurants simultaneously. Third, when users look for menu recommendation, their purchase history and shopping cart functions should appear at the first page of the website. Users should be able to perceive the improved usability of the website using those functions. Fourth, when the search window is fixed on the top of each page, users should be able to find the information they need. Fifth, the application must allow users to find the exact location of the delivery person and the estimated delivery time. Finally, the restaurants'address should be disclosed and fast delivery time should be confirmed to enhance users'trust on the application. This study contributes to academia and industry by suggesting useful insight into food delivery service applications and improving the point of food delivery service application in Korea.

Design and Implementation of Web Based Instruction Based on Constructivism for Self-Directed Learning Ablity (구성주의 이론에 기반한 자기주도적 웹 기반 교육의 설계와 구현)

  • Kim Gi-Nam;Kim Eui-Jeong;Kim Chang-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.855-858
    • /
    • 2006
  • First of all, Developing information technology makes it possible to change a paradigm of all kinds of areas, including an education. Students can choose learning goals and objects themselves and acquire not the accumulation of knowledge but the method of their learning. Moreover, Teachers get to be adviser, and students play a key role in teaming. That is, the subject of leaning is students. Constructivism emphasizes the student-oriented environment of education, which corresponds to the characteristics of hypeimedia. In addition, Internet allows us to make a practical plan for constructivism. Web Based Internet provides us with a proper environment to make constructivism practice md causes an education system to change. Sure Web Based Instruction makes them motivated to learn more, they can gain plenty of information regardless of places or time. Besides, they are able to consult more up-to-date information regarding their learning use hypermedia such as an image, audio, video, and test, and effectively communicate with their instructor through a board, an e-mail, a chatting etc. A school and instructors have been making effort to develop a new model of a teaching method to cope with a new environment change. In this thesis, with 'Design and Implementation of Web Based Instruction Based on Constructivism', providing online learner-oriented and indexed video lesson, learners can get chance of self-oriented learning. In addition, learners doesn't have to cover all contents of a lesson but can choose contents they want to have from a indexed list of a lesson, and they ran search contents they want to have with a 'Keyword Search' on a main page, which can make learners improve learner's achievement.

  • PDF

Analysis of Questions and Answers Posted on the Internet Blogs about Prenatal Genetic Diagnosis and Screening (블로그를 통해 본 산전 기형아 검사와 양수검사에 대한 질문과 댓글 분석)

  • Jun, Myunghee;Shin, Gyeyoung;Choi, Kyung Sook
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.3
    • /
    • pp.252-264
    • /
    • 2015
  • The purpose of this study was to identify pregnant women's needs for information on prenatal genetic diagnosis and screening. This study is consisted of two phases. In the first phase in December 2011, six blogs featuring questions and answers on prenatal genetic diagnosis and screening were selected from four major search engines in Korea by using the keywords "prenatal genetic diagnosis," "prenatal genetic screening", and "amniocentesis." An analyzing framework was constructed on the basis of 389 posts on six blogs between November 2006 and October 2011. In the second phase, the contents of the "MomsHolicbaby" blog posted from November 2010 to October 2011 were reviewed. Then, pregnant women's questions on prenatal genetic diagnosis and screening (100 questions) and amniocentesis (200 questions with 1,665 answers) were analyzed using descriptive statistics. Among posters who had ever been recommended to undergo amniocentesis, 56.5% described feelings of anxiety, 25.5% did not know the purpose of the test, and 33.9% refused to undergo the test. Among 295 posters answering questions about amniocentesis, 61.4% disagreed with undergoing the test. The results show that there is a need for healthcare professionals to provide more educational and emotional support to pregnant women considering prenatal genetic diagnosis and screening. Providing online health information can be integrated into prenatal genetic education for pregnant women as well as nurses. In addition, prenatal women's preferences about undergoing amniocentesis should be reflected in the current legal discussion on criteria for termination of pregnancy.

A Study on the Impact Factors of Contents Diffusion in Youtube using Integrated Content Network Analysis (일반영향요인과 댓글기반 콘텐츠 네트워크 분석을 통합한 유튜브(Youtube)상의 콘텐츠 확산 영향요인 연구)

  • Park, Byung Eun;Lim, Gyoo Gun
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.19-36
    • /
    • 2015
  • Social media is an emerging issue in content services and in current business environment. YouTube is the most representative social media service in the world. YouTube is different from other conventional content services in its open user participation and contents creation methods. To promote a content in YouTube, it is important to understand the diffusion phenomena of contents and the network structural characteristics. Most previous studies analyzed impact factors of contents diffusion from the view point of general behavioral factors. Currently some researchers use network structure factors. However, these two approaches have been used separately. However this study tries to analyze the general impact factors on the view count and content based network structures all together. In addition, when building a content based network, this study forms the network structure by analyzing user comments on 22,370 contents of YouTube not based on the individual user based network. From this study, we re-proved statistically the causal relations between view count and not only general factors but also network factors. Moreover by analyzing this integrated research model, we found that these factors affect the view count of YouTube according to the following order; Uploader Followers, Video Age, Betweenness Centrality, Comments, Closeness Centrality, Clustering Coefficient and Rating. However Degree Centrality and Eigenvector Centrality affect the view count negatively. From this research some strategic points for the utilizing of contents diffusion are as followings. First, it is needed to manage general factors such as the number of uploader followers or subscribers, the video age, the number of comments, average rating points, and etc. The impact of average rating points is not so much important as we thought before. However, it is needed to increase the number of uploader followers strategically and sustain the contents in the service as long as possible. Second, we need to pay attention to the impacts of betweenness centrality and closeness centrality among other network factors. Users seems to search the related subject or similar contents after watching a content. It is needed to shorten the distance between other popular contents in the service. Namely, this study showed that it is beneficial for increasing view counts by decreasing the number of search attempts and increasing similarity with many other contents. This is consistent with the result of the clustering coefficient impact analysis. Third, it is important to notice the negative impact of degree centrality and eigenvector centrality on the view count. If the number of connections with other contents is too much increased it means there are many similar contents and eventually it might distribute the view counts. Moreover, too high eigenvector centrality means that there are connections with popular contents around the content, and it might lose the view count because of the impact of the popular contents. It would be better to avoid connections with too powerful popular contents. From this study we analyzed the phenomenon and verified diffusion factors of Youtube contents by using an integrated model consisting of general factors and network structure factors. From the viewpoints of social contribution, this study might provide useful information to music or movie industry or other contents vendors for their effective contents services. This research provides basic schemes that can be applied strategically in online contents marketing. One of the limitations of this study is that this study formed a contents based network for the network structure analysis. It might be an indirect method to see the content network structure. We can use more various methods to establish direct content network. Further researches include more detailed researches like an analysis according to the types of contents or domains or characteristics of the contents or users, and etc.

Building Participatory Digital Archives for Documenting Localities (로컬리티 기록화를 위한 참여형 아카이브 구축에 관한 연구)

  • Seol, Moon-Won
    • The Korean Journal of Archival Studies
    • /
    • no.32
    • /
    • pp.3-44
    • /
    • 2012
  • The purpose of the study is to explore the strategies to build participatory digital archives for documenting localities. Following the introduction of the chapter one, the chapter two deals with categorizing participation types of persons and organizations for documenting localities, analysing characteristics and benefits of each type, and listing up the requirements of participatory archives based on literature reviews. The chapter three focuses on the analyses of digital archives especially based on the participation of organizations such as collecting institutions and community archives in USA, Canada and UK. The cases of participatory archives are divided into two types; i) digital archives based on archival collections of institutions such as libraries, archives, and museums, ii) digital archives mainly based on various community archives. Online Archives California(OAC) and Calisphere of University of California, MemoryBC of British Columbia of Canada, and People's Collection Wales of UK as the first type cases, and Connecting Histories of Birmingham, 'Community Archives Wales(CAW), Cambridgeshire Community Archive Network(CCAN), Norfolk Community Archives Network(NORCAN) as the second type cases are selected for comparative analyses. All these cases can be considered as archival portals since they cover collections from various organizations. This study then evaluates how these digital archives fulfill the requirements of participatory archives such as : i) integrated search of archives that are to be distributed, ii) participation of individuals and organizations, and iii) providing broader contextual information and representation of context as well as contents of archives. Lastly the final chapter suggests the implications for building participatory archives in Korean local areas based on following aspects : host organizations and implementation strategy, networks of collection institutions and community archives, preserving and reorganizing contextual information, selection and appraisal, and participation of records users and creators.

Business Application of Convolutional Neural Networks for Apparel Classification Using Runway Image (합성곱 신경망의 비지니스 응용: 런웨이 이미지를 사용한 의류 분류를 중심으로)

  • Seo, Yian;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.1-19
    • /
    • 2018
  • Large amount of data is now available for research and business sectors to extract knowledge from it. This data can be in the form of unstructured data such as audio, text, and image data and can be analyzed by deep learning methodology. Deep learning is now widely used for various estimation, classification, and prediction problems. Especially, fashion business adopts deep learning techniques for apparel recognition, apparel search and retrieval engine, and automatic product recommendation. The core model of these applications is the image classification using Convolutional Neural Networks (CNN). CNN is made up of neurons which learn parameters such as weights while inputs come through and reach outputs. CNN has layer structure which is best suited for image classification as it is comprised of convolutional layer for generating feature maps, pooling layer for reducing the dimensionality of feature maps, and fully-connected layer for classifying the extracted features. However, most of the classification models have been trained using online product image, which is taken under controlled situation such as apparel image itself or professional model wearing apparel. This image may not be an effective way to train the classification model considering the situation when one might want to classify street fashion image or walking image, which is taken in uncontrolled situation and involves people's movement and unexpected pose. Therefore, we propose to train the model with runway apparel image dataset which captures mobility. This will allow the classification model to be trained with far more variable data and enhance the adaptation with diverse query image. To achieve both convergence and generalization of the model, we apply Transfer Learning on our training network. As Transfer Learning in CNN is composed of pre-training and fine-tuning stages, we divide the training step into two. First, we pre-train our architecture with large-scale dataset, ImageNet dataset, which consists of 1.2 million images with 1000 categories including animals, plants, activities, materials, instrumentations, scenes, and foods. We use GoogLeNet for our main architecture as it has achieved great accuracy with efficiency in ImageNet Large Scale Visual Recognition Challenge (ILSVRC). Second, we fine-tune the network with our own runway image dataset. For the runway image dataset, we could not find any previously and publicly made dataset, so we collect the dataset from Google Image Search attaining 2426 images of 32 major fashion brands including Anna Molinari, Balenciaga, Balmain, Brioni, Burberry, Celine, Chanel, Chloe, Christian Dior, Cividini, Dolce and Gabbana, Emilio Pucci, Ermenegildo, Fendi, Giuliana Teso, Gucci, Issey Miyake, Kenzo, Leonard, Louis Vuitton, Marc Jacobs, Marni, Max Mara, Missoni, Moschino, Ralph Lauren, Roberto Cavalli, Sonia Rykiel, Stella McCartney, Valentino, Versace, and Yve Saint Laurent. We perform 10-folded experiments to consider the random generation of training data, and our proposed model has achieved accuracy of 67.2% on final test. Our research suggests several advantages over previous related studies as to our best knowledge, there haven't been any previous studies which trained the network for apparel image classification based on runway image dataset. We suggest the idea of training model with image capturing all the possible postures, which is denoted as mobility, by using our own runway apparel image dataset. Moreover, by applying Transfer Learning and using checkpoint and parameters provided by Tensorflow Slim, we could save time spent on training the classification model as taking 6 minutes per experiment to train the classifier. This model can be used in many business applications where the query image can be runway image, product image, or street fashion image. To be specific, runway query image can be used for mobile application service during fashion week to facilitate brand search, street style query image can be classified during fashion editorial task to classify and label the brand or style, and website query image can be processed by e-commerce multi-complex service providing item information or recommending similar item.

Increasing Accuracy of Classifying Useful Reviews by Removing Neutral Terms (중립도 기반 선택적 단어 제거를 통한 유용 리뷰 분류 정확도 향상 방안)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.3
    • /
    • pp.129-142
    • /
    • 2016
  • Customer product reviews have become one of the important factors for purchase decision makings. Customers believe that reviews written by others who have already had an experience with the product offer more reliable information than that provided by sellers. However, there are too many products and reviews, the advantage of e-commerce can be overwhelmed by increasing search costs. Reading all of the reviews to find out the pros and cons of a certain product can be exhausting. To help users find the most useful information about products without much difficulty, e-commerce companies try to provide various ways for customers to write and rate product reviews. To assist potential customers, online stores have devised various ways to provide useful customer reviews. Different methods have been developed to classify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most shopping websites provide customer reviews and offer the following information: the average preference of a product, the number of customers who have participated in preference voting, and preference distribution. Most information on the helpfulness of product reviews is collected through a voting system. Amazon.com asks customers whether a review on a certain product is helpful, and it places the most helpful favorable and the most helpful critical review at the top of the list of product reviews. Some companies also predict the usefulness of a review based on certain attributes including length, author(s), and the words used, publishing only reviews that are likely to be useful. Text mining approaches have been used for classifying useful reviews in advance. To apply a text mining approach based on all reviews for a product, we need to build a term-document matrix. We have to extract all words from reviews and build a matrix with the number of occurrences of a term in a review. Since there are many reviews, the size of term-document matrix is so large. It caused difficulties to apply text mining algorithms with the large term-document matrix. Thus, researchers need to delete some terms in terms of sparsity since sparse words have little effects on classifications or predictions. The purpose of this study is to suggest a better way of building term-document matrix by deleting useless terms for review classification. In this study, we propose neutrality index to select words to be deleted. Many words still appear in both classifications - useful and not useful - and these words have little or negative effects on classification performances. Thus, we defined these words as neutral terms and deleted neutral terms which are appeared in both classifications similarly. After deleting sparse words, we selected words to be deleted in terms of neutrality. We tested our approach with Amazon.com's review data from five different product categories: Cellphones & Accessories, Movies & TV program, Automotive, CDs & Vinyl, Clothing, Shoes & Jewelry. We used reviews which got greater than four votes by users and 60% of the ratio of useful votes among total votes is the threshold to classify useful and not-useful reviews. We randomly selected 1,500 useful reviews and 1,500 not-useful reviews for each product category. And then we applied Information Gain and Support Vector Machine algorithms to classify the reviews and compared the classification performances in terms of precision, recall, and F-measure. Though the performances vary according to product categories and data sets, deleting terms with sparsity and neutrality showed the best performances in terms of F-measure for the two classification algorithms. However, deleting terms with sparsity only showed the best performances in terms of Recall for Information Gain and using all terms showed the best performances in terms of precision for SVM. Thus, it needs to be careful for selecting term deleting methods and classification algorithms based on data sets.

Development of the Web-based Sports Biomechanics Class (웹기반 운동역학 수업 모형 개발)

  • Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.307-318
    • /
    • 2002
  • To provide a guideline for the development of a web-based sport biomechanics class in undergraduate program, thirty web sites, searched via search engines in May 2002, were analyzed intensively. In terms of requirement of log-in, only one site of 30 sites required user name and password. Seventeen(57%) sites provided the lecture note, which had various file formats such as 59% if PDF, 29% of HTML, and 12% of PPT. Fourteen(47%) sites provided the assignment and grade information on web. Eleven(37%) sites provided various resource and links which were related in sports biomechanics. Only four(13%) sites provided discussion or online digitizing or kinematic analysis program. Based on above results, a guideline for the development of a virtual classroom for college level sport biomechanics. A web-based sport biomechanics class should be developed with consideration of several functions as follows; homepage design, lecture note, measurement of class attendance, collaborative research system, and web-based data collection and analysis software for biomechanics laboratory.