• 제목/요약/키워드: online customer review

검색결과 168건 처리시간 0.026초

Evaluation of Vegan Fashion Products by Consumers in Online Review (온라인 구매후기에 나타난 소비자의 비건 패션제품 평가 차원)

  • Jiwoon Jeong;So Jung Yun
    • The Korean Fashion and Textile Research Journal
    • /
    • 제25권4호
    • /
    • pp.419-428
    • /
    • 2023
  • This study examines customer reviews from online stores of Korean vegan fashion brands to determine the qualities that customers value in vegan fashion items. For this purpose, we conducted a case study of online reviews-2,285 reviews were collected and analyzed. The results are as follows: The clothing evaluation criteria for vegan fashion products can be divided into four categories: aesthetics, material characteristics, affordability, and characteristics. This suggests that evaluation standards for vegan fashion items operate at multiple levels. The animal welfare aspect of the product was the most important factor, followed closely by how well the clothes fit. High-quality vegan materials and the use of recycled materials that are environmentally friendly were emphasized. The findings of this study suggest that even for vegan products, stylistic features remain an essential component of fashion items. To understand the main aspects of clothing evaluation criteria in the current vegan fashion market, this study differs from other studies in that it examined online reviews of vegan fashion brands. This comprehensive analysis contributes to a deeper understanding of customer preferences and highlights the importance of ethical considerations alongside style in the evaluation of vegan fashion items, providing valuable insights for the industry. Moving forward, this study is significant in suggesting that vegan fashion brands should develop their products as well as their brands, capitalizing on the demand for ethically conscious and stylish options.

Designn and Implementation Online Customer Reviews Analysis System based on Dependency Network Model (종속성 네트워크 기반의 온라인 고객리뷰 분석시스템 설계 및 구현)

  • Kim, Keun-Hyung
    • The Journal of the Korea Contents Association
    • /
    • 제10권11호
    • /
    • pp.30-37
    • /
    • 2010
  • It is very important to analyze online customer reviews, which are small documents of writing opinions or experiences about products or services, for both customers and companies because the customers can get good informations and the companies can establish good marketing strategies. In this paper, we did not propose only dependency network model which is tool for analyzing online customer reviews, but also designed and implemented the system based on the dependency network model. The dependency network model analyzes both subjective and objective sentences, so that it can represent relative importance and relationship between the nouns in the sentences. In the result of implementing, we recognized that relative importance and relationship between the features of products or services, which can not be mined by opinion mining, can be represented by the dependency network model.

A Personalized Approach for Recommending Useful Product Reviews Based on Information Gain

  • Choeh, Joon Yeon;Lee, Hong Joo;Park, Sung Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권5호
    • /
    • pp.1702-1716
    • /
    • 2015
  • Customer product reviews have become great influencers of purchase decision making. To assist potential customers, online stores provide various ways to sort customer reviews. Different methods have been developed to identify and recommend useful reviews to customers, primarily using feedback provided by customers about the helpfulness of reviews. Most of the methods consider the preferences of all users to determine whether reviews are helpful, and all users receive the same recommendations.

Sentiment Analyses of the Impacts of Online Experience Subjectivity on Customer Satisfaction (감성분석을 이용한 온라인 체험 내 비정형데이터의 주관도가 고객만족에 미치는 영향 분석)

  • Yeeun Seo;Sang-Yong Tom Lee
    • Information Systems Review
    • /
    • 제25권1호
    • /
    • pp.233-255
    • /
    • 2023
  • The development of information technology(IT) has brought so-called "online experience" to satisfy our daily needs. The market for online experiences grew more during the COVID-19 pandemic. Therefore, this study attempted to analyze how the features of online experience services affect customer satisfaction by crawling structured and unstructured data from the online experience web site newly launched by Airbnb after COVID-19. As a result of the analysis, it was found that the structured data generated by service users on a C2C online sharing platform had a positive effect on the satisfaction of other users. In addition, unstructured text data such as experience introductions and host introductions generated by service providers turned out to have different subjectivity scores depending on the purpose of its text. It was confirmed that the subjective host introduction and the objective experience introduction affect customer satisfaction positively. The results of this study are to provide various implications to stakeholders of the online sharing economy platform and researchers interested in online experience knowledge management.

The Influence of Customer's Multidimensional Evaluation in Online Review :Focused on Apparel Products (온라인상에서의 다차원적인 사용후기의 영향에 관한 연구 : 의류제품을 중심으로)

  • Suh, Mun-Shik;Ahn, Jin-Woo;Lee, Ji-Eun;Park, Sun-Kyung
    • The Journal of the Korea Contents Association
    • /
    • 제9권8호
    • /
    • pp.255-271
    • /
    • 2009
  • Since consumers have difficulty in acquiring information related to products in online, they are apt to use WOM(word-of-mouth). It seems to be more popular and acceptable methods to acquire information about products sold in online. In other words, consumers who visit the Internet shopping-mall can not make a purchase-decision immediately because they have no sufficient knowledge about products. To solve this problem, consumers make use of the service called "online review". The objective of this study is to verify how these reviews can influence attitude toward the message, product and several buying behaviors in the online. In particular, this study focus on the message's sidedness(positive or negative) and objectivity(objective or subjective), because it is expected that consumers are likely to behave differently according to the characteristics of online reviews. Thus, to measure consumer's attitude and buying behavior, this study was examined by 4 types of messages. The results of this study are as follows: First, in the positive-objective message, the message attitude has a stronger effect on purchase intention than other outcomes. Second, in the positive-subjective message, the message attitude has a stronger effect on revisiting intention than others. Third, in the negative-objective message, the message attitude has a stronger effect on purchase intention than others. Hence, it is said that online shopping-mall managers need to understand the effects of multidimensional online review.

The Relationship Between Service Quality of Brand Community and Brand Community Loyalty (브랜드 커뮤니티와 브랜드 커뮤니티 충성도에 관한 연구)

  • Park, Jong-Oh
    • Management & Information Systems Review
    • /
    • 제25권
    • /
    • pp.339-370
    • /
    • 2008
  • As the Internet environment develops, Internet has already been being established as important tool of business marketing and branding. In particular, a brand community where customers interact with other customers who have the same interest in brand provides a variety of benefits to customers as well as companies. The brand community makes it possible for company to build, and retain relationships with customers, and capture new market opportunities. Therefore, this study examines the relationship among service quality of brand community, customer value, customer satisfaction, customer trust, and brand community loyalty in online brand communities. The results of empirical analysis can be summarized by the following: First, service quality of brand community had a significant direct effect on customer value. Second, service quality of brand community had a significant direct effect on customer satisfaction. It had also a positive, significant indirect effect on customer satisfaction through customer value and customer trust. Third, service quality of brand community had a significant indirect effect on brand community loyalty through customer satisfaction, customer value, and customer trust. Therefore, These finding will spawn both academic and practitioner interest in brand community and serve as a foundation for further research in this important area.

  • PDF

Too Much Information - Trying to Help or Deceive? An Analysis of Yelp Reviews

  • Hyuk Shin;Hong Joo Lee;Ruth Angelie Cruz
    • Asia pacific journal of information systems
    • /
    • 제33권2호
    • /
    • pp.261-281
    • /
    • 2023
  • The proliferation of online customer reviews has completely changed how consumers purchase. Consumers now heavily depend on authentic experiences shared by previous customers. However, deceptive reviews that aim to manipulate customer decision-making to promote or defame a product or service pose a risk to businesses and buyers. The studies investigating consumer perception of deceptive reviews found that one of the important cues is based on review content. This study aims to investigate the impact of the information amount of review on the review truthfulness. This study adopted the Information Manipulation Theory (IMT) as an overarching theory, which asserts that the violations of one or more of the Gricean maxim are deceptive behaviors. It is regarded as a quantity violation if the required information amount is not delivered or more information is delivered; that is an attempt at deception. A topic modeling algorithm is implemented to reveal the distribution of each topic embedded in a text. This study measures information amount as topic diversity based on the results of topic modeling, and topic diversity shows how heterogeneous a text review is. Two datasets of restaurant reviews on Yelp.com, which have Filtered (deceptive) and Unfiltered (genuine) reviews, were used to test the hypotheses. Reviews that contain more diverse topics tend to be truthful. However, excessive topic diversity produces an inverted U-shaped relationship with truthfulness. Moreover, we find an interaction effect between topic diversity and reviews' ratings. This result suggests that the impact of topic diversity is strengthened when deceptive reviews have lower ratings. This study contributes to the existing literature on IMT by building the connection between topic diversity in a review and its truthfulness. In addition, the empirical results show that topic diversity is a reliable measure for gauging information amount of reviews.

Brand Personality of Global Automakers through Text Mining

  • Kim, Sungkuk
    • Journal of Korea Trade
    • /
    • 제25권2호
    • /
    • pp.22-45
    • /
    • 2021
  • Purpose - This study aims to identify new attributes by analyzing reviews conducted by global automaker customers and to examine the influence of these attributes on satisfaction ratings in the U.S. automobile sales market. The present study used J.D. Power for customer responses, which is the largest online review site in the USA. Design/methodology - Automobile customer reviews are valid data available to analyze the brand personality of the automaker. This study collected 2,998 survey responses from automobile companies in the U.S. automobile sales market. Keyword analysis, topic modeling, and the multiple regression analysis were used to analyze the data. Findings - Using topic modeling, the author analyzed 2,998 responses of the U.S. automobile brands. As a result, Topic 1 (Competence), Topic 5 (Sincerity), and Topic 6 (Prestige) attributes had positive effects, and Topic 2 (Sophistication) had a negative effect on overall customer responses. Topic 4 (Conspicuousness) did not have any statistical effect on this research. Topic 1, Topic 5, and Topic 6 factors also show the importance of buying factors. This present study has contributed to identifying a new attribute, personality. These findings will help global automakers better understand the impacts of Topic 1, Topic 5, and Topic 6 on purchasing a car. Originality/value - Contrary to a traditional approach to brand analysis using questionnaire survey methods, this study analyzed customer reviews using text mining. This study is timely research since a big data analysis is employed in order to identify direct responses to customers in the future.

A Study on Market Segmentation Based on E-Commerce User Reviews Using Clustering Algorithm (클러스터링 기법을 활용한 이커머스 사용자 리뷰에 따른 시장세분화 연구)

  • Kim, Mingyeong;Huh, Jaeseok;Sa, Aejin;Jun, Ahreum;Lee, Hanbyeol
    • The Journal of Society for e-Business Studies
    • /
    • 제27권2호
    • /
    • pp.21-36
    • /
    • 2022
  • Recently, as COVID-19 has made the e-commerce market expand widely, customers who have different consumption patterns appear in the market. Because companies can obtain opinions and information of customers from reviews, they increasingly face the requirements of managing customer reviews on online platform. In this study, we analyze customers and carry out market segmentation for classifying and defining type of customers in e-commerce. Specifically, K-means clustering was conducted on customer review data collected from Wemakeprice online shopping platform, which leads to the result that six clusters were derived. Finally, we define the characteristics of each cluster and propose a customer management plan. This paper is possible to be used as materials which identify types of customers and it can reduce the cost of customer management and make a profit for online platforms.

Analysis on Review Data of Restaurants in Google Maps through Text Mining: Focusing on Sentiment Analysis

  • Shin, Bee;Ryu, Sohee;Kim, Yongjun;Kim, Dongwhan
    • Journal of Multimedia Information System
    • /
    • 제9권1호
    • /
    • pp.61-68
    • /
    • 2022
  • The importance of online reviews is prevalent as more people access goods or places online and make decisions to visit or purchase. However, such reviews are generally provided by short sentences or mere star ratings; failing to provide a general overview of customer preferences and decision factors. This study explored and broke down restaurant reviews found on Google Maps. After collecting and analyzing 5,427 reviews, we vectorized the importance of words using the TF-IDF. We used a random forest machine learning algorithm to calculate the coefficient of positivity and negativity of words used in reviews. As the result, we were able to build a dictionary of words for positive and negative sentiment using each word's coefficient. We classified words into four major evaluation categories and derived insights into sentiment in each criterion. We believe the dictionary of review words and analyzing the major evaluation categories can help prospective restaurant visitors to read between the lines on restaurant reviews found on the Web.