• Title/Summary/Keyword: online big data

Search Result 382, Processing Time 0.025 seconds

Online Information Sources of Coronavirus Using Webometric Big Data (코로나19 사태와 온라인 정보의 다양성 연구 - 빅데이터를 활용한 글로벌 접근법)

  • Park, Han Woo;Kim, Ji-Eun;Zhu, Yu-Peng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.728-739
    • /
    • 2020
  • Using webometric big data, this study examines the diversity of online information sources about the novel coronavirus causing the COVID-19 pandemic. Specifically, it focuses on some 28 countries where confirmed coronavirus cases occurred in February 2020. In the results, the online visibility of Australia, Canada, and Italy was the highest, based on their producing the most relevant information. There was a statistically significant correlation between the hit counts per country and the frequency of visiting the domains that act as information channels. Interestingly, Japan, China, and Singapore, which had a large number of confirmed cases at that time, were providing web data related to the novel coronavirus. Online sources were classified using an N-tuple helix model. The results showed that government agencies were the largest supplier of coronavirus information in cyberspace. Furthermore, the two-mode network technique revealed that media companies, university hospitals, and public healthcare centers had taken a positive attitude towards online circulation of coronavirus research and epidemic prevention information. However, semantic network analysis showed that health, school, home, and public had high centrality values. This means that people were concerned not only about personal prevention rules caused by the coronavirus outbreak, but also about response plans caused by life inconveniences and operational obstacles.

The Effect on Satisfaction with Mediation of Trust Caused by Hypermarkets' Online Image (온라인에서 대형마트 쇼핑몰의 이미지가 신뢰를 매개로 만족에 미치는 영향)

  • Shin, Moon-Shik;Kim, Hyo-Jung
    • Journal of Distribution Science
    • /
    • v.12 no.10
    • /
    • pp.67-74
    • /
    • 2014
  • Purpose - This study analyzed how image affects customer trust and satisfaction in the online shopping mall market, which is becoming more competitive; future implications for customer management in online shopping malls were presented. Consumers visit and prefer a few shopping mall sites instead of many sites. Consumers do not visit sites that cannot provide trust and satisfaction. Therefore, establishing trust and satisfaction with differentiated image is essential for survival and growth. Specifically analyzing company image, shop image, and brand image, I studied how symbolic image, functional image, and empirical image affect satisfaction mediated by trust in the online shopping malls of hypermarket retailers. Research design, data, and methodology - To investigate the relationship between image and satisfaction of big box retailers' shopping malls in the online market, the study is based on analyzed data from questionnaires involving advanced research. From May 1st to 20th in the year 2014, a questionnaire survey targeting university students using big box retailers' shopping malls in Seoul was conducted. A total of 282 questionnaires were conducted, and 276 questionnaires were used for empirical analysis, excluding invalid data. Using the SPSS 21.0 statistics package, factor analysis and regression analysis were implemented, and effects of image on trust and satisfaction were presented. Results - First, symbolic image can affect satisfaction with only trust. Among 3 image factors, symbolic image exerts the most influence on trust; trust is important in coupling the medium to satisfaction. Second, functional image and empirical image affect satisfaction directly and indirectly with trust. Conclusions - As I classified the image of hyper market retailers' online shopping malls into symbolic, functional, and empirical image, I analyzed the effects of image on trust and satisfaction empirically. The results of the study and strategic implications are as follows. First, symbolic image can affect satisfaction with only trust. Among 3 image factors, symbolic image exerts the most influence on trust; trust is important in coupling the medium to satisfaction. The establishment of a distinctive symbolic image, such as the online shopping mall's loyalty, level of awareness, and special service, is needed. With the establishment of symbolic image, trust and satisfaction could be improved. Second, functional image and empirical image affect satisfaction directly and indirectly with trust. Especially, as functional image affects trust more than empirical image, setting and implementing a strategy for empirical image based on the right price, service, and convenience could raise trust and satisfaction. Empirical image affects trust and satisfaction substantially. Even though empirical image's influence on trust is lower than that of other three image factors, empirical image's influence on satisfaction is higher than symbolic image. Therefore, it requires a strategy for providing joyful use, and information research functions and distinctive use experience are important to improve satisfaction. This study analyzed image characteristics of hyper-market retailers' online shopping malls in the fast-growing online market; future strategic implications were presented.

Predicting tobacco risk factors by using social big data (소셜 빅데이터를 활용한 담배 위험 예측)

  • Song, Tae Min;Song, Juyoung;Cheon, Mi Kyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.5
    • /
    • pp.1047-1059
    • /
    • 2015
  • This study will predict risk factors associated with cigarettes in Korea by analyzing the social big data collected from the internet such as blogs, cafes, and SNSes in Korea, using data mining techniques. The key analysis results are as follows. First, when "raising cigarette price"is mentioned online, the negative group (i.e., the proportion of people holding negative views about smoking) increased from 58.6% to 74.8%, and when "lung cancer" is mentioned, it increased to 73.1%. Second, with regard to cigarettes in general, the positive group (i.e., the proportion of people holding positive views about smoking) decreased by 5.6% after the raising of cigarette prices, while the negative group increased by 6.1%. Third, when policies related to "FCTC, raising cigarette price, non-smoking laws, smoking regulations, non-smoking ads, and nonsmoking business" are more frequently mentioned online, the positive group tended to decrease. Finally, when "non-smoking drugs, non-smoking patches, and non-smoking gums" are more frequently mentioned online, the positive group tended to decrease. However, when "electronic cigarettes and supplements" are more frequently mentioned online, the positive group increased.

A Study on the Purchasing Factors of Color Cosmetics Using Big Data: Focusing on Topic Modeling and Concor Analysis (빅데이터를 활용한 색조화장품의 구매 요인에 관한 연구: 토픽모델링과 Concor 분석을 중심으로)

  • Eun-Hee Lee;Seung- Hee Bae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.724-732
    • /
    • 2023
  • In this study, we tried to analyze the characteristics of color cosmetics information search and the major information of interest in the color cosmetics market after COVID-19 shown in the text mining analysis results by collecting data on online interest information of consumers in the color cosmetics market after COVID-19. In the empirical analysis, text mining was performed on all documents such as news, blogs, cafes, and web pages, including the word "color cosmetics". As a result of the analysis, online information searches for color cosmetics after COVID-19 were mainly focused on purchase information, information on skin and mask-related makeup methods, and major topics such as interest brands and event information. As a result, post-COVID-19 color cosmetics buyers will become more sensitive to purchase information such as product value, safety, price benefits, and store information through active online information search, so a response strategy is required.

Determinants of Information Technology Audit Quality: Evidence from Vietnam

  • NGUYEN, Anh Huu;HA, Hanh Hong;NGUYEN, Soa La
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.4
    • /
    • pp.41-50
    • /
    • 2020
  • The paper aims to investigate auditors, auditing firms and other external factors that affect quality of information technology audit in Vietnam. We conducted 2 types of data collections including direct and on survey. For direct survey, we sent directly to auditors at the training classes organized by State Securities Exchanges Commission. An online survey was established and Google doc link was provided to the Big4 and non-Big4 auditors. We received 138 survey responses in that 90 auditors came from Big4 and 48 auditors from non-Big4 firms. The data are analyzed using a factor analysis and compare means approaches to illustrate the potential IT audit quality factors and identify differences between two groups of auditors. The results show that independence and accounting knowledge and audit skills are the most important factors. And since external auditors perform many assurance services, the independence is critical. The result also shows that the auditors need to have enough competent and professional skills when conducting an audit, especially within an IT environment that requires high quality. The findings suggest a similar pattern of two groups in the context of Vietnam and some factors of auditors and auditing firms appear to have a statistically significant impact on quality of IT audit.

Exploring the Job Competencies of Data Scientists Using Online Job Posting (온라인 채용정보를 이용한 데이터 과학자 요구 역량 탐색)

  • Jin, Xiangdan;Baek, Seung Ik
    • The Journal of Society for e-Business Studies
    • /
    • v.27 no.2
    • /
    • pp.1-20
    • /
    • 2022
  • As the global business environment is rapidly changing due to the 4th industrial revolution, new jobs that did not exist before are emerging. Among them, the job that companies are most interested in is 'Data Scientist'. As information and communication technologies take up most of our lives, data on not only online activities but also offline activities are stored in computers every hour to generate big data. Companies put a lot of effort into discovering new opportunities from such big data. The new job that emerged along with the efforts of these companies is data scientist. The demand for data scientist, a promising job that leads the big data era, is constantly increasing, but its supply is not still enough. Although data analysis technologies and tools that anyone can easily use are introduced, companies still have great difficulty in finding proper experts. One of the main reasons that makes the data scientist's shortage problem serious is the lack of understanding of the data scientist's job. Therefore, in this study, we explore the job competencies of a data scientist by qualitatively analyzing the actual job posting information of the company. This study finds that data scientists need not only the technical and system skills required of software engineers and system analysts in the past, but also business-related and interpersonal skills required of business consultants and project managers. The results of this study are expected to provide basic guidelines to people who are interested in the data scientist profession and to companies that want to hire data scientists.

Mining Loot Box News : Analysis of Keyword Similarities Using Word2Vec (확률형 아이템 뉴스 마이닝 : Word2Vec 활용한 키워드 유사도 분석)

  • Kim, Taekyung;Son, Wonseok;Jeon, Seongmin
    • Journal of Information Technology Services
    • /
    • v.20 no.2
    • /
    • pp.77-90
    • /
    • 2021
  • Online and mobile games represent digital entertainment. Not only the game grows fast, but also it has been noted for unique business models such as a subscription revenue model and free-to-play with partial payment. But, a recent revenue mechanism, called a loot-box system, has been criticized due to overspending, weak protection to teenagers, and more over gambling-like features. Policy makers and research communities have counted on expert opinions, review boards, and temporal survey studies to build countermeasures to minimize negative effects of online and mobile games. In this process, speed was not seriously considered. In this study, we attempt to use a big data source to find a way of observing a trend for policy makers and researchers. Specifically, we tried to apply the Word2Vec data mining algorithm to news repositories. From the findings, we acknowledged that the suggested design would be effective in lightening issues timely and precisely. This study contributes to digital entertainment service communities by providing a practical method to follow up trends; thus, helping practitioners have concrete grounds for balancing public concerns and business purposes.

e-Learning Course Reviews Analysis based on Big Data Analytics (빅데이터 분석을 이용한 이러닝 수강 후기 분석)

  • Kim, Jang-Young;Park, Eun-Hye
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.423-428
    • /
    • 2017
  • These days, various and tons of education information are rapidly increasing and spreading due to Internet and smart devices usage. Recently, as e-Learning usage increasing, many instructors and students (learners) need to set a goal to maximize learners' result of education and education system efficiency based on big data analytics via online recorded education historical data. In this paper, the author applied Word2Vec algorithm (neural network algorithm) to find similarity among education words and classification by clustering algorithm in order to objectively recognize and analyze online recorded education historical data. When the author applied the Word2Vec algorithm to education words, related-meaning words can be found, classified and get a similar vector values via learning repetition. In addition, through experimental results, the author proved the part of speech (noun, verb, adjective and adverb) have same shortest distance from the centroid by using clustering algorithm.

Comparative Analysis in Perception on Men's Fashion Using Big Data : Focused on Influence of COVID-19 (빅 데이터를 활용한 코로나19 이전과 이후의 남성 패션에 대한 인식 비교)

  • Kim, Do-Hyeon;Kim, Jeong-Mee
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.24 no.3
    • /
    • pp.1-15
    • /
    • 2022
  • The purpose of this study is to compare and analyze the perception of men's fashion before and after the COVID-19 pandemic. TEXTOM allowed the collection of Big Data based on the term 'men's fashion'. As for the data collection periods, Jan. 1, 2018 to Dec. 31, 2019 was set as the pre-COVID-19 era, while Jan. 1, 2020 to Dec. 31, 2021 was set as the post-COVID-19 era. The top 50 words in terms of appearance frequency were extracted from the data. The extracted words were processed using network centrality analysis and CONCOR analysis using Ucinet 6. Research findings were as follows. 1) In the pre-COVID-19 era, the appearance frequency of 'men' was the highest, followed by 'fashion', 'men's fashion', 'brand', 'daily look', 'suit', and 'department store'. These words came up with a high TF-IDF values. Network centrality analysis discovered that 'men', 'fashion', 'men's fashion', 'brand', and 'suit' had a high level of connectivity with other words. CONCOR analysis showed four significant groups: 'fashion item and styles', 'fashion show', 'purchase', and 'collection'. 2) In the post-COVID-19 era, the appearance frequency of 'men' was the highest, followed by 'fashion', 'brand', 'men's fashion', 'discount', 'women', and 'luxury'. These words also displayed high TF-IDF values. Network centrality analysis found that 'fashion', 'men', 'brand', 'men's fashion', and 'discount' had a high level of connectivity with other words. CONCOR analysis showed four significant groups: 'fashion item and style', 'fashion show', 'purchase', and 'situation'. 3) Before the outbreak of the pandemic, men were interested in suits to wear to the office, daily look, and fashion shows in Milan and Paris. They often purchased menswear in multi-brand and open stores. However, they were more interested in sneakers, casual styles, and online fashion shows as social distancing and working from home became common. Most purchased menswear through online platforms.

Research on Personalized Course Recommendation Algorithm Based on Att-CIN-DNN under Online Education Cloud Platform

  • Xiaoqiang Liu;Feng Hou
    • Journal of Information Processing Systems
    • /
    • v.20 no.3
    • /
    • pp.360-374
    • /
    • 2024
  • A personalized course recommendation algorithm based on deep learning in an online education cloud platform is proposed to address the challenges associated with effective information extraction and insufficient feature extraction. First, the user potential preferences are obtained through the course summary, course review information, user course history, and other data. Second, by embedding, the word vector is turned into a low-dimensional and dense real-valued vector, which is then fed into the compressed interaction network-deep neural network model. Finally, considering that learners and different interactive courses play different roles in the final recommendation and prediction results, an attention mechanism is introduced. The accuracy, recall rate, and F1 value of the proposed method are 0.851, 0.856, and 0.853, respectively, when the length of the recommendation list K is 35. Consequently, the proposed strategy outperforms the comparison model in terms of recommending customized course resources.