The purpose of this study is to set up an acoustic prediction technique and to perform the IL test of scale down noise reducing device for the development of the noise reducing device as the development of 400km/h class high speed train. First of all, the IL prediction of noise reducing device was performed with the 2D BEM method. And the noise test of scale down noise reducing device in anechoic chamber was performed for the verification of acoustic prediction technique and IL performance evaluation. As the results, the acoustic prediction technique for the development of noise reducing device was verified because the averaged IL difference between prediction and test is in 2dB(A). And the measured IL value of noise reducing device is less than 2dB(A), and additional IL with polyester absorption material is increased about 0.5dB(A).
Kim, Solee;Choi, Yerim;Kim, Yoonjung;Park, Kyuyon;Park, Jonghun
KIISE Transactions on Computing Practices
/
v.21
no.11
/
pp.733-738
/
2015
User demographic information is necessary in order to improve the quality of personalized services such as recommendation systems. Mobile data, especially text data, is known to be effective for prediction of user demographic information. However, mobile text data has privacy issues so that its utilization is limited. In this regard, we introduce an on-device gender prediction framework utilizing mobile text data while minimizing the privacy issue. Discriminative word and emoticon sets of each gender are constructed from web documents written by authors of each gender. After gender prediction is performed by comparing discriminative word and emoticon sets with a user's mobile text data, an ensemble method that combines two prediction results draws a final result. From experiments conducted on real-world mobile text data, the proposed on-device framework shows promising results for gender prediction.
As respecting one's privacy becomes an important issue in mobile device data analysis, on-device analysis is getting attention, in which the data analysis is conducted inside a mobile device without sending data from the device to outside. One possible application of the on-device analysis is gender prediction using text data in mobile devices, such as text messages, search keyword, website bookmarks, and contact, which are highly private, and the limited computing power of mobile devices can be addressed by utilizing the word comparison method, where words are selected beforehand and delivered to a mobile device of a user to determine the user's gender by matching mobile text data and the selected words. Moreover, it is known that performing prediction after filtering instances using definite evidences increases accuracy and reduces computational complexity. In this regard, we propose a two-phase approach to on-device gender prediction, where both discriminability and popularity of a word are sequentially considered. The proposed method performs predictions using a few highly discriminative words for all instances and popular words for unclassified instances from the previous prediction. From the experiments conducted on real-world dataset, the proposed method outperformed the compared methods.
This paper proposes a methodology for creating a function based reliability prediction model. Although, there are various works for reliability prediction, one of the features of their research is that the research is based on hardware-centered reliability prediction. Reliability is often defined as the probability that a device will perform its intended function, under operating condition, for a specified period of time, there is a profound irony about reliability prediction problem. In this paper, we proposed four-phase modeling procedure for function-centered reliability prediction. The proposed modeling procedure consists of four models; 1) structure block model, 2) function block model, 3) device model, and 4) reliability prediction model. We performed function-centered reliability prediction for electronic ballast using the proposed modeling procedure and MIL-HDBK-217F which is the military handbook for reliability prediction of electronic equipment.
The Journal of Korean Institute of Communications and Information Sciences
/
v.19
no.8
/
pp.1446-1452
/
1994
In this paper, Weibull distribution is applied to the lifetme distribution of a device. The method of Bayesian estimate used to estimate requiring parameter in order to predict lifetime of device using accelerated lifetime test data, namely failure time of device. The method of Bayesian estimate needs prior information in order to estimate parameter. But this paper proposed the method of parameter estimate without prior information. As stress is temperature, Arrhenius model is applied and the method of linear estimate is applied to predict lifetime of device at the state of normal operation.
Nowadays mobile devices are used for various applications such as making voice/video calls, browsing the Internet, listening to music etc. The average battery consumption of each of these activities and the length of time a user spends on each one determines the battery lifetime of a mobile device. Previous methods have provided predictions of battery lifetime using a static battery consumption rate that does not consider user characteristics. This paper proposes an approach to predict a mobile device's available battery lifetime based on usage patterns. Because every user has a different pattern of voice calls, data communication, and video call usage, we can use such usage patterns for personalized prediction of battery lifetime. Firstly, we define one or more states that affect battery consumption. Then, we record time-series log data related to battery consumption and the use time of each state. We calculate the average battery consumption rate for each state and determine the usage pattern based on the time-series data. Finally, we predict the available battery time based on the average battery consumption rate for each state and the usage pattern. We also present the experimental trials used to validate our approach in the real world.
Transactions on Electrical and Electronic Materials
/
v.16
no.6
/
pp.317-322
/
2015
The metal oxide varistor (MOV) is a major component of the surge protection devices (SPDs) currently in use. The device is judged to be faulty when fatigue caused by the continuous inflow of lightning accumulates and reaches the damage limit. In many cases, induced lightning resulting from lightning strikes flows in to the device several times per second in succession. Therefore, the frequency or the rate at which the SPD is actually exposed to stress, called a surge, is outside the range of human perception. For this reason, the protective device should be replaced if it actually approaches the end of its life even though it is not faulty at present, currently no basis exists for making the judgment of remaining lifetime. Up to now, the life of an MOV has been predicted solely based on the number of inflow surges, irrespective of the magnitude of the surge current or the amount of energy that has flowed through the device. In this study, nonlinear data that shows the damage to an MOV depending on the count of surge and the amount of input current were collected through a high-voltage test. Then, a failure prediction algorithm was proposed by preparing a look-up table using the results of the test. The proposed method was experimentally verified using an impulse surge generator
Accurate and reliable weather forecasts for temperature, relative humidity, and precipitation using advanced transformer models and IoT are essential in various fields related to global climate change. We propose a novel weather prediction device that integrates state-of-the-art transformer models and IoT techniques to improve prediction accuracy and real-time processing. The proposed system demonstrated high reliability and performance, offering valuable insights for industries and sectors that rely on accurate weather information, including agriculture, transportation, and emergency response planning. The integration of transformer models with the IoT signifies a substantial advancement in weather and climate modeling.
We propose a real time personalized recommendation algorithm on the mobile device. We use a unified collaborative filtering with reduced data. We use Fuzzy C-means clustering to obtain the reduced data and Konohen SOM is applied to get initial values of the cluster centers. The proposed algorithm overcomes data sparsity since it extends data to the similar users and similar items. Also, it enables real time service on the mobile device since it reduces computing time by data clustering. Applying the suggested algorithm to the MovieLens data, we show that the suggested algorithm has reasonable performance in comparison with collaborative filtering. We developed Android-based smart-phone application, which recommends restaurants with coupons and restaurant information.
Proceedings of the Korea Concrete Institute Conference
/
2000.04a
/
pp.297-302
/
2000
Pipe cooling method is widely used for reduction of hydration heat and control of cracking in mass concrete structures. However, in order to effectively apply pipe cooling systems to concrete structure, the coefficient of flow convection relating the thermal transfer between inner stream of pipe and concrete must be estimated. In this study, a device measuring the coefficient of flow convection is developed. Since a variation of thermal distribution caused by pipe cooling has a direct effect in internal forced flows, the developed testing device is based on the internal forced flow concept. Influencing factors on the coefficient of flow convection are mainly flow velocity, pipe diameter and thickness, and pipe material. finally a prediction model of the coefficient of flow convection is proposed using experimental results from the developed device. According to the proposed prediction model, the coefficient of flow convection increases with increase in flow velocity and decreases with increase in pipe diameter and thickness. Also, the coefficient of flow convection is largely affected by the type of pipe materials.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.