• Title/Summary/Keyword: on-device AI

Search Result 173, Processing Time 0.023 seconds

User Experience Analysis and Management Based on Text Mining: A Smart Speaker Case (텍스트 마이닝 기반 사용자 경험 분석 및 관리: 스마트 스피커 사례)

  • Dine Yeon;Gayeon Park;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.77-99
    • /
    • 2020
  • Smart speaker is a device that provides an interactive voice-based service that can search and use various information and contents such as music, calendar, weather, and merchandise using artificial intelligence. Since AI technology provides more sophisticated and optimized services to users by accumulating data, early smart speaker manufacturers tried to build a platform through aggressive marketing. However, the frequency of using smart speakers is less than once a month, accounting for more than one third of the total, and user satisfaction is only 49%. Accordingly, the necessity of strengthening the user experience of smart speakers has emerged in order to acquire a large number of users and to enable continuous use. Therefore, this study analyzes the user experience of the smart speaker and proposes a method for enhancing the user experience of the smart speaker. Based on the analysis results in two stages, we propose ways to enhance the user experience of smart speakers by model. The existing research on the user experience of the smart speaker was mainly conducted by survey and interview-based research, whereas this study collected the actual review data written by the user. Also, this study interpreted the analysis result based on the smart speaker user experience dimension. There is an academic significance in interpreting the text mining results by developing the smart speaker user experience dimension. Based on the results of this study, we can suggest strategies for enhancing the user experience to smart speaker manufacturers.

Contactless Data Society and Reterritorialization of the Archive (비접촉 데이터 사회와 아카이브 재영토화)

  • Jo, Min-ji
    • The Korean Journal of Archival Studies
    • /
    • no.79
    • /
    • pp.5-32
    • /
    • 2024
  • The Korean government ranked 3rd among 193 UN member countries in the UN's 2022 e-Government Development Index. Korea, which has consistently been evaluated as a top country, can clearly be said to be a leading country in the world of e-government. The lubricant of e-government is data. Data itself is neither information nor a record, but it is a source of information and records and a resource of knowledge. Since administrative actions through electronic systems have become widespread, the production and technology of data-based records have naturally expanded and evolved. Technology may seem value-neutral, but in fact, technology itself reflects a specific worldview. The digital order of new technologies, armed with hyper-connectivity and super-intelligence, not only has a profound influence on traditional power structures, but also has an a similar influence on existing information and knowledge transmission media. Moreover, new technologies and media, including data-based generative artificial intelligence, are by far the hot topic. It can be seen that the all-round growth and spread of digital technology has led to the augmentation of human capabilities and the outsourcing of thinking. This also involves a variety of problems, ranging from deep fakes and other fake images, auto profiling, AI lies hallucination that creates them as if they were real, and copyright infringement of machine learning data. Moreover, radical connectivity capabilities enable the instantaneous sharing of vast amounts of data and rely on the technological unconscious to generate actions without awareness. Another irony of the digital world and online network, which is based on immaterial distribution and logical existence, is that access and contact can only be made through physical tools. Digital information is a logical object, but digital resources cannot be read or utilized without some type of device to relay it. In that respect, machines in today's technological society have gone beyond the level of simple assistance, and there are points at which it is difficult to say that the entry of machines into human society is a natural change pattern due to advanced technological development. This is because perspectives on machines will change over time. Important is the social and cultural implications of changes in the way records are produced as a result of communication and actions through machines. Even in the archive field, what problems will a data-based archive society face due to technological changes toward a hyper-intelligence and hyper-connected society, and who will prove the continuous activity of records and data and what will be the main drivers of media change? It is time to research whether this will happen. This study began with the need to recognize that archives are not only records that are the result of actions, but also data as strategic assets. Through this, author considered how to expand traditional boundaries and achieves reterritorialization in a data-driven society.

A Study on the Current Situation and Improved Method for the Smombie through Field Survey and ICT Trend Analysis (현장 조사와 ICT 동향 분석을 통한 스몸비 현황과 개선 방안 연구)

  • Lee, Dong Hoon;Oh, Hye Soo;Jang, Jae Min;Jeong, Jong Woon;Yang, Sang Oon
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.74-85
    • /
    • 2020
  • Smart phone zombie or Smombie means pedestrians who walk without attention to their surroundings because they are focused upon their smart phone. Because the traffic accidents and injuries caused by Smombie have been increased rapidly in recent years, the social attention and policies are needed to prevent it. This study was conducted to analyze Smombie's current status and some solutions used before and to propose new improved method through the latest ICT trend. In this study, we did the field survey to check Smombies at several places in Seoul through people counting, and found that a lot of pedestrians still use the smart phone while walking. And we analyzed many case studies about some solutions to prevent Smombies previously. The case studies include legal regulations, government policies, smart phone app services and facilities that are used before. We studied them through internet searches and reference studies and we also checked the current operating situation as visiting several places that the solutions actually has been operated. Therefore, we found there are some limitations in previous solutions in terms of effectiveness and management. To consider new solution that can be expected to overcome the limitations, we analyzed the latest ICT trends focused on features to utilize the Smombie prevention, especially video recognition and digital signage. In these days, video recognition has been developed rapidly with assistance of AI technology and it can recognize the specific pedestrian's characteristics such as holding smart phone as well as hair style, clothes, backpack and etc. On the other hands, the digital signage is the convergence device that includes big display, network connection and various IoT sensors. It can be used as public media in many places for public services as well as advertising. Through these analysis results, we show the requirements and the user scenario for the improved method to prevent Smombie. Finally, we propose to develop R&D technology to recognize Smombie exactly as pedestrian attributes and to spread creative contents to increase pedestrian's interest and engagement for Smombie prevention through digital signage.

Detection Fastener Defect using Semi Supervised Learning and Transfer Learning (준지도 학습과 전이 학습을 이용한 선로 체결 장치 결함 검출)

  • Sangmin Lee;Seokmin Han
    • Journal of Internet Computing and Services
    • /
    • v.24 no.6
    • /
    • pp.91-98
    • /
    • 2023
  • Recently, according to development of artificial intelligence, a wide range of industry being automatic and optimized. Also we can find out some research of using supervised learning for deteceting defect of railway in domestic rail industry. However, there are structures other than rails on the track, and the fastener is a device that binds the rail to other structures, and periodic inspections are required to prevent safety accidents. In this paper, we present a method of reducing cost for labeling using semi-supervised and transfer model trained on rail fastener data. We use Resnet50 as the backbone network pretrained on ImageNet. At first we randomly take training data from unlabeled data and then labeled that data to train model. After predict unlabeled data by trained model, we adopted a method of adding the data with the highest probability for each class to the training data by a predetermined size. Futhermore, we also conducted some experiments to investigate the influence of the number of initially labeled data. As a result of the experiment, model reaches 92% accuracy which has a performance difference of around 5% compared to supervised learning. This is expected to improve the performance of the classifier by using relatively few labels without additional labeling processes through the proposed method.

LSTM-based Fire and Odor Prediction Model for Edge System (엣지 시스템을 위한 LSTM 기반 화재 및 악취 예측 모델)

  • Youn, Joosang;Lee, TaeJin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.2
    • /
    • pp.67-72
    • /
    • 2022
  • Recently, various intelligent application services using artificial intelligence are being actively developed. In particular, research on artificial intelligence-based real-time prediction services is being actively conducted in the manufacturing industry, and the demand for artificial intelligence services that can detect and predict fire and odors is very high. However, most of the existing detection and prediction systems do not predict the occurrence of fires and odors, but rather provide detection services after occurrence. This is because AI-based prediction service technology is not applied in existing systems. In addition, fire prediction, odor detection and odor level prediction services are services with ultra-low delay characteristics. Therefore, in order to provide ultra-low-latency prediction service, edge computing technology is combined with artificial intelligence models, so that faster inference results can be applied to the field faster than the cloud is being developed. Therefore, in this paper, we propose an LSTM algorithm-based learning model that can be used for fire prediction and odor detection/prediction, which are most required in the manufacturing industry. In addition, the proposed learning model is designed to be implemented in edge devices, and it is proposed to receive real-time sensor data from the IoT terminal and apply this data to the inference model to predict fire and odor conditions in real time. The proposed model evaluated the prediction accuracy of the learning model through three performance indicators, and the evaluation result showed an average performance of over 90%.

A Study on the Changes in Functions of Ship Officer and Manpower Training by the Introduction of Maritime Autonomous Surface Ships (자율운항선박 도입에 따른 해기사 직능 변화와 인력양성에 관한연구)

  • Lim, Sung-Ju;Shin, Yong-John
    • Journal of Navigation and Port Research
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • This study aims to investigate changes in the demand for ship officers in response to changes in the shipping industry environment in which Maritime Autonomous Surface Ships (MASS) emerge according to the application of the fourth industrial revolution technology to ships, and it looks into changes in the skill of ship officer. It also analyzes and proposes a plan for nurturing ship officers accordingly. As a result of the degree of recognition and AHP analysis, this study suggests that a new training system is required because the current training and education system may cover the job competencies of emergency response, caution and danger navigation, general sailing, cargo handling, seaworthiness maintenance, emergency response, and ship maintenance and management, but tasks such as remote control, monitoring diagnosis, device management capability, and big data analysis require competency for unmanned and shore-based control. By evaluating the importance of change factors in the duties of ship officers in Maritime Autonomous Surface Ships, this study provides information on ship officer educational institutions' response strategies for nurturing ship officers and prioritization of resource allocation, etc. The importance of these factors was compared and evaluated to suggest changes in the duties of ship officers and methods of nurturing ship officers according to the introduction of Maritime Autonomous Surface Ships. It is expected that the findings of this study will be meaningful as it systematically derives the duties and competency factors of ship officers of Maritime Autonomous Surface Ships from a practical point of view and analyzed the perception level of each relevant expert to diagnose expert-level responses to the introduction of Maritime Autonomous Surface Ships.

Thermal Compression of Copper-to-Copper Direct Bonding by Copper films Electrodeposited at Low Temperature and High Current Density (저온 및 고전류밀도 조건에서 전기도금된 구리 박막 간의 열-압착 직접 접합)

  • Lee, Chae-Rin;Lee, Jin-Hyeon;Park, Gi-Mun;Yu, Bong-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.102-102
    • /
    • 2018
  • Electronic industry had required the finer size and the higher performance of the device. Therefore, 3-D die stacking technology such as TSV (through silicon via) and micro-bump had been used. Moreover, by the development of the 3-D die stacking technology, 3-D structure such as chip to chip (c2c) and chip to wafer (c2w) had become practicable. These technologies led to the appearance of HBM (high bandwidth memory). HBM was type of the memory, which is composed of several stacked layers of the memory chips. Each memory chips were connected by TSV and micro-bump. Thus, HBM had lower RC delay and higher performance of data processing than the conventional memory. Moreover, due to the development of the IT industry such as, AI (artificial intelligence), IOT (internet of things), and VR (virtual reality), the lower pitch size and the higher density were required to micro-electronics. Particularly, to obtain the fine pitch, some of the method such as copper pillar, nickel diffusion barrier, and tin-silver or tin-silver-copper based bump had been utillized. TCB (thermal compression bonding) and reflow process (thermal aging) were conventional method to bond between tin-silver or tin-silver-copper caps in the temperature range of 200 to 300 degrees. However, because of tin overflow which caused by higher operating temperature than melting point of Tin ($232^{\circ}C$), there would be the danger of bump bridge failure in fine-pitch bonding. Furthermore, regulating the phase of IMC (intermetallic compound) which was located between nickel diffusion barrier and bump, had a lot of problems. For example, an excess of kirkendall void which provides site of brittle fracture occurs at IMC layer after reflow process. The essential solution to reduce the difficulty of bump bonding process is copper to copper direct bonding below $300^{\circ}C$. In this study, in order to improve the problem of bump bonding process, copper to copper direct bonding was performed below $300^{\circ}C$. The driving force of bonding was the self-annealing properties of electrodeposited Cu with high defect density. The self-annealing property originated in high defect density and non-equilibrium grain boundaries at the triple junction. The electrodeposited Cu at high current density and low bath temperature was fabricated by electroplating on copper deposited silicon wafer. The copper-copper bonding experiments was conducted using thermal pressing machine. The condition of investigation such as thermal parameter and pressure parameter were varied to acquire proper bonded specimens. The bonded interface was characterized by SEM (scanning electron microscope) and OM (optical microscope). The density of grain boundary and defects were examined by TEM (transmission electron microscopy).

  • PDF

The Improvement Plan for Indicator System of Personal Information Management Level Diagnosis in the Era of the 4th Industrial Revolution: Focusing on Application of Personal Information Protection Standards linked to specific IT technologies (제4차 산업시대의 개인정보 관리수준 진단지표체계 개선방안: 특정 IT기술연계 개인정보보호기준 적용을 중심으로)

  • Shin, Young-Jin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.1-13
    • /
    • 2021
  • This study tried to suggest ways to improve the indicator system to strengthen the personal information protection. For this purpose, the components of indicator system are derived through domestic and foreign literature, and it was selected as main the diagnostic indicators through FGI/Delphi analysis for personal information protection experts and a survey for personal information protection officers of public institutions. As like this, this study was intended to derive an inspection standard that can be reflected as a separate index system for personal information protection, by classifying the specific IT technologies of the 4th industrial revolution, such as big data, cloud, Internet of Things, and artificial intelligence. As a result, from the planning and design stage of specific technologies, the check items for applying the PbD principle, pseudonymous information processing and de-identification measures were selected as 2 common indicators. And the checklists were consisted 2 items related Big data, 5 items related Cloud service, 5 items related IoT, and 4 items related AI. Accordingly, this study expects to be an institutional device to respond to new technological changes for the continuous development of the personal information management level diagnosis system in the future.

Development of a Pre-treating Equipment and the Carcass Disposal System for Infected Poultry (감염가금 전처리 및 폐사가축 처리시스템 개발)

  • Hong, J.T.;Kim, H.J.;Yu, B.K.;Lee, S.H.;Hyun, C.S.;Ryu, I.S.;Oh, K.Y.;Kim, S.;Kwon, J.H.;Tack, D.S.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.2
    • /
    • pp.81-92
    • /
    • 2011
  • When we bury the infected poultry into the ground, we have many problems such as the difficulty of making sufficient area for burying, environmental contamination by the leachate, unpleasant ordor. Also, in case of burning the carcass of the infected poultry, there are some problems such as high cost, dust, unpleasant odor, etc. It could cause environmental contamination which many peoples and environmental organization complains about. In this study, we develop a treating system which treats the infected poultry carcass in a environmental method preventing the environment contamination. This system is composed of many processes. The euthanasia system uses rigid vinyl to trap and to do a euthanasia the infected poultry with lethal gas, carbon dioxide. And then, with the tractor attached grappler infected poultry carcass could be put into the carcass treating system. The euthanasia system uses rigid vinyl to trap the infected birds and to confine lethal gas, carbon dioxide. Infected poultry carcass are moved to carcass disposal system by collecting device which is attached at tractor. The carcass treatment system (capacity of disposal : 6.3 $m^3$) is installed on a truck and do one pass work, which is input, crush, stir, sterilize, and discharge treated carcass. 1,000 chickens was killed within 9.7min by $CO_2$ (300L/min) in the tent (10 $m^3$). The collecting device could carry 142 chickens at a time, and the movable carcass treatment system could sterilize 2 tons carcass per hour (at one time). This treatment systems was eco-friendly because it reduced the volume of carcass by 31.9% with no wastewater generation.

Tokamak plasma disruption precursor onset time study based on semi-supervised anomaly detection

  • X.K. Ai;W. Zheng;M. Zhang;D.L. Chen;C.S. Shen;B.H. Guo;B.J. Xiao;Y. Zhong;N.C. Wang;Z.J. Yang;Z.P. Chen;Z.Y. Chen;Y.H. Ding;Y. Pan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1501-1512
    • /
    • 2024
  • Plasma disruption in tokamak experiments is a challenging issue that causes damage to the device. Reliable prediction methods are needed, but the lack of full understanding of plasma disruption limits the effectiveness of physics-driven methods. Data-driven methods based on supervised learning are commonly used, and they rely on labelled training data. However, manual labelling of disruption precursors is a time-consuming and challenging task, as some precursors are difficult to accurately identify. The mainstream labelling methods assume that the precursor onset occurs at a fixed time before disruption, which leads to mislabeled samples and suboptimal prediction performance. In this paper, we present disruption prediction methods based on anomaly detection to address these issues, demonstrating good prediction performance on J-TEXT and EAST. By evaluating precursor onset times using different anomaly detection algorithms, it is found that labelling methods can be improved since the onset times of different shots are not necessarily the same. The study optimizes precursor labelling using the onset times inferred by the anomaly detection predictor and test the optimized labels on supervised learning disruption predictors. The results on J-TEXT and EAST show that the models trained on the optimized labels outperform those trained on fixed onset time labels.