• Title/Summary/Keyword: on-chip magnet

Search Result 12, Processing Time 0.018 seconds

Preparation of Metal-p-aminobenzyl-DOTA Complex Using Magnetic Particles for Bio-tagging in Laser Ablation ICP-MS

  • Yoon, S.Y.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3665-3670
    • /
    • 2012
  • Metal-p-$NH_2$-Bn-DOTA (paraammionobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid: ABDOTA) complex was synthesized and purified for bio-tagging to quantify biological target materials using laser ablation (LA)-ICP-MS. Since the preparation of a pure and stable tagging complex is the key procedure for quantification, magnetic particles were used to purify the synthesized metal-ABDOTA complex. The magnetic particles immobilized with the complex attracted to a permanent magnet, resulting in fast separation from free un-reacted metal ions in solution. Gd ions formed the metal-complex with a higher yield of 64.3% (${\pm}3.9%$ relative standard deviation (RSD)) than Y ions, 52.3% (${\pm}2.5%$ RSD), in the pH range 4-7. The complex bound to the magnetic particles was released by treatment with a strong base, of which the recovery was 81.7%. As a reference, a solid phase extraction (SPE) column packed with Chelex-100 resin was employed for separation under similar conditions and produced comparable results. The tagging technique complemented polydimethylsiloxane (PDMS) microarray chip sampling in LA-ICP-MS, allowing determination of small sample volumes at high throughputs. For application, immunoglobulin G (IgG) was immobilized on the pillars of PDMS microarray chips and then tagged with the prepared Gd complex. IgG could then be determined through measurement of Gd by LA-ICP-MS. A detection limit of 1.61 ng/mL (${\pm}0.75%$ RSD) for Gd was obtained.

VLSI Design for Automatic Magnetizing and Inspection System (자동착자 및 검사자동화 시스템을 위한 집적회로 설계)

  • Im, Tae-Yeong;Lee, Cheon-Hui
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1929-1940
    • /
    • 1999
  • In this paper a VLSI design for the automatic magnetizing and inspection system has been presented. This is a design of a peripheral controller, which magnetizes CRTs and computer monitors and controls the automatic inspection system. We implemented a programmable peripheral interface(PPI) circuit of the control and protocol module for the magnetizer controller by using a 0.8um CMOS SOG technology of ETRI. Most of the PPI functions have been confirmed. In the conventional method, the propagation/ramp delay model was used to predict the delay of cells, but used to model on only a single cell. Later, a modified "linear delay predict model" was suggested in the LODECAP(LOgic DEsign CAPture) by adding some factors to the prior model. But this has not a full model on the delay chain. In this paper a new " delay predict equation" for the design of the timing control block in PPI system has been suggested. We have described the detail method on a design of delay chain block according to the extracted equation and applied this method to the timing control block design. And we had descriptions on the other blocks of this system.

  • PDF