DOI QR코드

DOI QR Code

Preparation of Metal-p-aminobenzyl-DOTA Complex Using Magnetic Particles for Bio-tagging in Laser Ablation ICP-MS

  • Yoon, S.Y. (Department of Chemistry, Dankook University) ;
  • Lim, H.B. (Department of Chemistry, Dankook University)
  • Received : 2012.06.18
  • Accepted : 2012.08.12
  • Published : 2012.11.20

Abstract

Metal-p-$NH_2$-Bn-DOTA (paraammionobenzyl-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid: ABDOTA) complex was synthesized and purified for bio-tagging to quantify biological target materials using laser ablation (LA)-ICP-MS. Since the preparation of a pure and stable tagging complex is the key procedure for quantification, magnetic particles were used to purify the synthesized metal-ABDOTA complex. The magnetic particles immobilized with the complex attracted to a permanent magnet, resulting in fast separation from free un-reacted metal ions in solution. Gd ions formed the metal-complex with a higher yield of 64.3% (${\pm}3.9%$ relative standard deviation (RSD)) than Y ions, 52.3% (${\pm}2.5%$ RSD), in the pH range 4-7. The complex bound to the magnetic particles was released by treatment with a strong base, of which the recovery was 81.7%. As a reference, a solid phase extraction (SPE) column packed with Chelex-100 resin was employed for separation under similar conditions and produced comparable results. The tagging technique complemented polydimethylsiloxane (PDMS) microarray chip sampling in LA-ICP-MS, allowing determination of small sample volumes at high throughputs. For application, immunoglobulin G (IgG) was immobilized on the pillars of PDMS microarray chips and then tagged with the prepared Gd complex. IgG could then be determined through measurement of Gd by LA-ICP-MS. A detection limit of 1.61 ng/mL (${\pm}0.75%$ RSD) for Gd was obtained.

Keywords

References

  1. Becker, J. S.; Jakubowski, N. Chem. Soc. Rev. 2009, 38, 1969. https://doi.org/10.1039/b618635c
  2. Waentig, L.; Roos, P. H.; Jakubowski, N. J. Anal. At. Spectrom. 2009, 24, 924. https://doi.org/10.1039/b905224k
  3. Durrant, S. F.; Ward, N. I. J. Anal. At. Spectrom. 2005, 20, 821. https://doi.org/10.1039/b502206a
  4. Koellensperger, G.; Groeger, M.; Zinkl, D.; Petzelbauer, P.; Hann, S. J. Anal. At. Spectrom. 2009, 24, 97. https://doi.org/10.1039/b807397j
  5. Quinn, Z. A.; Baranov, V. I.; Tanner, S. D.; Wrana, J. L. J. Anal. At. Spectrom. 2002, 17, 892. https://doi.org/10.1039/b202306g
  6. Prange, A.; Pröfrock, D. J. Anal. At. Spectrom. 2008, 23, 432. https://doi.org/10.1039/b717916m
  7. Jakubowski, N.; Waentig, L.; Hayen, H.; Venkatachalam, A.; Bohlen, A.; Roos, P. H.; Manz, A. J. Anal. At. Spectrom. 2008, 23, 1497. https://doi.org/10.1039/b800346g
  8. Chen, B.; Peng, H.; Zheng, F.; Hu, B.; He, M.; Zhao, W.; Pang, D. J. Anal. At. Spectrom. 2010, 25, 1674. https://doi.org/10.1039/c003029e
  9. Hann, S.; Boeck, K.; Koellensperger, G. J. Anal. At. Spectrom. 2010, 25, 18. https://doi.org/10.1039/b911462a
  10. Chong, H. S.; Song, H. A.; Birch, N.; Le, T.; Lim, S. Y.; Ma, X. Bioorg. Med. Chem. Lett. 2008, 18, 3436. https://doi.org/10.1016/j.bmcl.2008.03.084
  11. Wangler, C.; Schirrmacher, R.; Bartenstein, P.; Wangler, B. Bioorg. Med. Chem. Lett. 2009, 19, 1926. https://doi.org/10.1016/j.bmcl.2009.02.052
  12. Ornatsky, O. I.; Kinach, R.; Bandura, D. R.; Lou, X.; Tanner, S. D.; Baranov, V. I.; Nitz, M.; Winnik, M. A. J. Anal. At. Spectrom. 2008, 23, 463. https://doi.org/10.1039/b710510j
  13. Leon-Rodriguez, L. M. D.; Kovacs, Z. Bioconjugate Chem. 2008, 19, 2.
  14. Kaden, T. A. Dalton Trans. 2006, 3617.
  15. Viola, N. A.; Rarig, R. S., Jr.; Ouellette, W.; Doyle, R. P. Polyhedron 2006, 25, 3457. https://doi.org/10.1016/j.poly.2006.06.039
  16. Zhang, S.; Merritt, M.; Woessner, D. E.; Lenkinski, R. E.; Sherry, A. D. Accounts Chem. Res. 2003, 36, 783. https://doi.org/10.1021/ar020228m
  17. Yoo, B. H.; Pagel, M. D. Bioconjugate Chem. 2007, 18, 903. https://doi.org/10.1021/bc060250q
  18. Corchero, J. L.; Villaverde, A. Trends Biotechnol. 2009, 27, 8.
  19. Fricker, S. P. Chem. Soc. Rev. 2006, 35, 524. https://doi.org/10.1039/b509608c
  20. Morcos, S. K. Eur. J. Radiol. 2008, 66, 175. https://doi.org/10.1016/j.ejrad.2008.01.025
  21. Lin, P. H.; Danadurai, K. S. K.; Huang, S. D. J. Anal. At. Spectrom. 2001, 16, 409. https://doi.org/10.1039/b008510n
  22. Camel, V. Spectroc. Acta Pt. B-Atom. Spectr. 2003, 58, 1177. https://doi.org/10.1016/S0584-8547(03)00072-7
  23. Long, Z.; Shen, Z.; Wu, D.; Qin, J.; Lin, B. Lab Chip. 2007, 7, 1819. https://doi.org/10.1039/b711741h
  24. Manouchehri, N.; Bermond, A. Anal. Chim. Acta 2006, 557, 337. https://doi.org/10.1016/j.aca.2005.10.038
  25. Kiptoo, J. K.; Ngila, J. C.; Silavwe, N. D. J. Hazard. Mater. 2009, 172, 1163. https://doi.org/10.1016/j.jhazmat.2009.07.119
  26. Gao, Y.; Oshita, K.; Lee, K. H.; Oshima, M.; Motomizu, S. Analyst. 2002, 127, 1713. https://doi.org/10.1039/b208341h
  27. Jang, J. H.; Lim, H. B. Microchem. J. 2010, 94, 148. https://doi.org/10.1016/j.microc.2009.10.011
  28. Raju, C. S. K.; Lück, D.; Scharf, H.; Jakubowski, N.; Panne, U. J. Anal. At. Spectrom. 2010, 25, 1573. https://doi.org/10.1039/c003251d
  29. Choi, H. S.; Ma, S. K.; Lee, J. S.; Lim, H. B. J. Anal. At. Spectrom. 2010, 25, 710. https://doi.org/10.1039/b916064g
  30. Ryu, W.; Kim, D.; Lim, H. B.; Houk, R. S. Bull. Korean Chem. Soc. 2007, 28, 553. https://doi.org/10.5012/bkcs.2007.28.4.553
  31. Lim, H. B.; Kim, D.; Jung, T.; Houk, R. S.; Kim, Y. Anal. Chim. Acta. 2005, 545, 119. https://doi.org/10.1016/j.aca.2005.04.067