• Title/Summary/Keyword: on-board camera

Search Result 232, Processing Time 0.022 seconds

Vehicle Detection for Adaptive Head-Lamp Control of Night Vision System (적응형 헤드 램프 컨트롤을 위한 야간 차량 인식)

  • Kim, Hyun-Koo;Jung, Ho-Youl;Park, Ju H.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.8-15
    • /
    • 2011
  • This paper presents an effective method for detecting vehicles in front of the camera-assisted car during nighttime driving. The proposed method detects vehicles based on detecting vehicle headlights and taillights using techniques of image segmentation and clustering. First, in order to effectively extract spotlight of interest, a pre-signal-processing process based on camera lens filter and labeling method is applied on road-scene images. Second, to spatial clustering vehicle of detecting lamps, a grouping process use light tracking method and locating vehicle lighting patterns. For simulation, we are implemented through Da-vinci 7437 DSP board with visible light mono-camera and tested it in urban and rural roads. Through the test, classification performances are above 89% of precision rate and 94% of recall rate evaluated on real-time environment.

Research for development of small format multi -spectral aerial photographing systems (PKNU 3) (소형 다중분광 항공촬영 시스템(PKNU 3호) 개발에 관한 연구)

  • 이은경;최철웅;서영찬;조남춘
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.143-152
    • /
    • 2004
  • Researchers seeking geological and environmental information, depend on remote sensing and aerial photographic datum from various commercial satellites and aircraft. However, adverse weather conditions as well as equipment expense limit the ability to collect data anywhere and anytime. To allow for better flexibility in geological and environmental data collection, we have developed a compact, multi-spectral automatic Aerial Photographic system (PKNU2). This system's Multi-spectral camera can record visible (RGB) and infrared (NIR) band (3032*2008 Pixels) images Visible and infrared band images were obtained from each camera respectively and produced color-infrared composite images to be analyzed for the purpose of the environmental monitoring. However this did not provide quality data. Furthermore, it has the disadvantage of having the stereoscopic overlap area being 60% unsatisfied due to the 12 seconds of storage time of each data The PKNU2 system in contrast, photographed photos of great capacity Thus, with such results, we have been proceeding to develop the advanced PKNU2 (PKNU3) system that consists of a color-infrared spectral camera that can photograph in the visible and near-infrared bands simultaneously using a single sensor, a thermal infrared camera, two 40G computers to store images, and an MPEG board that can compress and transfer data to the computer in real time as well as be able to be mounted onto a helicopter platform.

  • PDF

A Camera Calibration Algorithm for an Ill-Conditioned Case (악조건하의 카메라 교정을 위한 알고리즘)

  • Lee, Jung-Hwa;Lee, Moon-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.164-175
    • /
    • 1999
  • If the camera plane is nearly parallel to the calibration board on which objects are defined, most of existing calibration approaches such as Tsai's radial-alignment-constraint method cannot be applied. Recently, for such an ill-conditioned case, Zhuang & Wu suggested the linear two-stage calibration algorithm assuming that the exact values of focal length and scale factor are known a priori. In this paper, we developed an iterative two-stage algorithm starts with initial guess fo the two parameters to determine the value of the others using Zhuang & Wu's method. In the second stage, the two parameters are locally optimized. This process is repeated until any improvement cannot be expected any more. The performance comparison between Zhuang & Wu's method and our algorithm shows the superiority of ours. Also included are the computational results for the effects of the distribution and the number of calibration points on the calibration performance.

  • PDF

APDE(Antenna Positioning Drive Electronics) Design for MSC (Multi-Spectral Camera)

  • Kong Jong-Pil;Heo Haeng-Pal;Kim YoungSun;Park Jong-Euk;Youn Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.440-443
    • /
    • 2004
  • As a main management unit of MSC, PMU controls the MSC payload operation by issuing commands to other subunit and PMU internal modules. One of these main control functions is to drive the APS(Antenna Pointing System) when APS motion is required. For this purpose, SBC(Single Board Computer) for calculating motor commands and APDE for driving APM(Antenna Pointing Mechanism) by PWM signal operate inside PUM. In this paper, details on APDE design shall be described such as electronic board architecture, primary and redundant design concept, Cross-Strap, FPGA contents and latch-up immune concept, etc., which shall show good practices of electronic board design for space program.

  • PDF

Design of an Image Processing Board Using DSP(TMS320C6211) and Its Applications (DSP(TMS320C6211)를 이용한 영상 처리 보드의 설계 및 응용)

  • 박무열;최중경;구본민;류한성;권정혁;하홍수;김진애
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.227-230
    • /
    • 2002
  • In this paper, we designed and made an image processing board that converts analog NTSC CVBS from CCD camera into digital image, stores it in a memory and accomplishes an appropriate digital image processing suitable to our application. And then loaded it on the self-controlled mobile vehicle and verified its performance by controlling the self-controlled mobile vehicle to avoid obstacles and arrive at the destination through various digital image processes. From the result, the self-controled mobile vehicle system avoided obstacles and got the destination correctly. We knew that designed image processing board is enough to realize the real-time control system.

  • PDF

Human Legs Motion Estimation by using a Single Camera and a Planar Mirror (단일 카메라와 평면거울을 이용한 하지 운동 자세 추정)

  • Lee, Seok-Jun;Lee, Sung-Soo;Kang, Sun-Ho;Jung, Soon-Ki
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.11
    • /
    • pp.1131-1135
    • /
    • 2010
  • This paper presents a method to capture the posture of the human lower-limbs on the 3D space by using a single camera and a planar mirror. The system estimates the pose of the camera facing the mirror by using four coplanar IR markers attached on the planar mirror. After that, the training space is set up based on the relationship between the mirror and the camera. When a patient steps on the weight board, the system obtains relative position between patients' feet. The markers are attached on the sides of both legs, so that some markers are invisible from the camera due to the self-occlusion. The reflections of the markers on the mirror can partially resolve the above problem with a single camera system. The 3D positions of the markers are estimated by using the geometric information of the camera on the training space. Finally the system estimates and visualizes the posture and motion of the both legs based on the 3D marker positions.

Real time Omni-directional Object Detection Using Background Subtraction of Fisheye Image (어안 이미지의 배경 제거 기법을 이용한 실시간 전방향 장애물 감지)

  • Choi, Yun-Won;Kwon, Kee-Koo;Kim, Jong-Hyo;Na, Kyung-Jin;Lee, Suk-Gyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.766-772
    • /
    • 2015
  • This paper proposes an object detection method based on motion estimation using background subtraction in the fisheye images obtained through omni-directional camera mounted on the vehicle. Recently, most of the vehicles installed with rear camera as a standard option, as well as various camera systems for safety. However, differently from the conventional object detection using the image obtained from the camera, the embedded system installed in the vehicle is difficult to apply a complicated algorithm because of its inherent low processing performance. In general, the embedded system needs system-dependent algorithm because it has lower processing performance than the computer. In this paper, the location of object is estimated from the information of object's motion obtained by applying a background subtraction method which compares the previous frames with the current ones. The real-time detection performance of the proposed method for object detection is verified experimentally on embedded board by comparing the proposed algorithm with the object detection based on LKOF (Lucas-Kanade optical flow).

Study on the Real-Time Moving Object Tracking using Fuzzy Controller (퍼지 제어기를 이용한 실시간 이동 물체 추적에 관한 연구)

  • Kim Gwan-Hyung;Kang Sung-In;Lee Jae-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.191-196
    • /
    • 2006
  • This paper presents the moving object tracking method using vision system. In order to track object in real time, the image of moving object have to be located the origin of the image coordinate axes. Accordingly, Fuzzy Control System is investigated for tracking the moving object, which control the camera module with Pan/Tilt mechanism. Hereafter, so the this system is applied to mobile robot, we design and implement image processing board for vision system. Also fuzzy controller is implemented to the StrongArm board. Finally, the proposed fuzzy controller is useful for the real-time moving object tracking system by experiment.

The Recognition of Crack Detection Using Difference Image Analysis Method based on Morphology (모폴로지 기반의 차영상 분석기법을 이용한 균열검출의 인식)

  • Byun Tae-bo;Kim Jang-hyung;Kim Hyung-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.1
    • /
    • pp.197-205
    • /
    • 2006
  • This paper presents the moving object tracking method using vision system. In order to track object in real time, the image of moving object have to be located the origin of the image coordinate axes. Accordingly, Fuzzy Control System is investigated for tracking the moving object, which control the camera module with Pan/Tilt mechanism. Hereafter, so the this system is applied to mobile robot, we design and implement image processing board for vision system. Also fuzzy controller is implemented to the StrongArm board. Finally, the proposed fuzzy controller is useful for the real-time moving object tracking system by experiment.

Development of a Monitoring and Forecasting System for the Delivery of Pregnant Sow (임신돈의 분만 감시 및 예측 시스템 개발)

  • 임영일
    • Journal of Animal Environmental Science
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2000
  • A monitoring and the forecasting system for the swine delivery was developed using CCD camera multi-function board microphone and data-recorder equipped on a personal computer. For the swine delivery monitoring and forecasting factors four factors were selected such as genitalia swine body shape breast color and sound. Image of physical variation of body shape, shape and color of genitalia area and color of breast of pregnant sow were grabbed using the CCD color camera and multi-function board and variation of voice of pregnant sow was acquired using microphone and data recorder. Acquired information of image and voice were analyzed using a custom developed algorithm and program. The result of the forecasting efficiency of swine delivery was 89%, 71% and 100% using the variation of genitalia are the body shape and the voice of pregnant sow. respectively. The efficiency of image processing was 100% for the delivery detection when the piglet was delivered half of its body from genitalia of pregnant sow, The monitoring and forecasting system informed the estimated time of the delivery of swine to a farm manager immediately if an estimated and established time set by the farm manager was the same and/or the estimated time ws earlier than the established time and the system detected the delivery.

  • PDF