• Title/Summary/Keyword: ompB

Search Result 33, Processing Time 0.017 seconds

Functional Analysis of the marB gene of Escherichia coli K-12

  • Lee, Chang-Mi;Park, Byung-Tae
    • Biomedical Science Letters
    • /
    • v.10 no.2
    • /
    • pp.153-161
    • /
    • 2004
  • Antibiotic resistance is often associated with the production of inner membrane proteins (for example, AcrAB/TolC efflux pump) that are capable to extrude antibiotics, detergents, dyes and organic solvents. In order to evaluate the unknown MarB function of Escherichia coli, especially focused on the function of OmpF porin, several mutants were construted by T4GT7 transduction. MarA plays a major roles in mar (multiple antibiotic resistance) phenotype with AcrAB/TolC efflux pump in E. coli K-12. Futhermore, MarA decreases OmpF porin expression via micF antisense RNA. Expression of acrAB is increased in strains containing mutation in marR, and in those carrying multicopy plasmid expressing marA. MarB protein of E. coli K-12 showed its activity at OmpF porin & TolC protein as target molecule. Some paper reported MarB positively regulates OmpF function. MarA shows mar phenotype, and MarB along with MarA show decreased MIC through OmpF function. By this experiment, MarB could decrease MIC through the OmpF porin & TolC protein as target.

  • PDF

Interaction between Omeprazole and $\gamma$-Cyclodextrin (오메프라졸과 $\gamma$-시클로덱스티린과의 복합체 형성 및 제제학적 특성)

  • 이계주;김은영
    • YAKHAK HOEJI
    • /
    • v.39 no.2
    • /
    • pp.175-184
    • /
    • 1995
  • The interaction of omeprazole(OMP) with $\gamma$-cyclodextrin($\gamma$-CyD) was investigated by solubility study and the complexation was confirmed by means of UV/VIS spectrophotometer, circular dichroism, differential scanning calorimeter, and $^{1}$H nuclear magnetic resonance spectra. The stability, dissolution rate, and partition coefficient of the complex were measured. The results present that the benzimidazole moiety and a part of pyridine ring containing sulfur atom of OMP might be included into the cavity of $\gamma$-CyD and the formation type of inclusion complex appeared to be B$_{s}$. The stoichiometric ratio of OMP to $\gamma$-CyD in the complex was found to be 1:1 and the stability constant of the complex found to be 97.1 M$^{-1}$. And the dissolution rate of OMP was markedly increased by inclusion complex formation with $\gamma$-CyD, and so it was above 90% in 5 min. from solid complex. Oil to water partition coefficient of OMP-$\gamma$-CyD complex was 60, which is significantly higher than that of OMP itself, 36.4. The degradation rate constant of OMP were greater than OMP-$\gamma$-CyD complex in aqueous solutions of various pHs, and the half lives of OMP and OMP-$\gamma$-CyD at pH 9 were 279.2 and 509.9 days, respectively, showing that the complex was more stable than OMP, therefore it was thought that OMP was stabilized by inclusion formation with $\gamma$-CyD.

  • PDF

Brucella melitensis omp31 Mutant Is Attenuated and Confers Protection Against Virulent Brucella melitensis Challenge in BALB/c Mice

  • Verdiguel-Fernandez, L;Oropeza-Navarro, R;Ortiz, Adolfo;Robles-Pesina, MG;Ramirez-Lezama, J;Castaneda-Ramirez, A;Verdugo-Rodriguez, A
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.497-504
    • /
    • 2020
  • For control of brucellosis in small ruminants, attenuated B. melitensis Rev1 is used but it can be virulent for animals and human. Based on these aspects, it is essential to identify potential immunogens to avoid these problems in prevention of brucellosis. The majority of OMPs in the Omp25/31 family have been studied because these proteins are relevant in maintaining the integrity of the outer membrane but their implication in the virulence of the different species of this genus is not clearly described. Therefore, in this work we studied the role of Omp31 on virulence by determining the residual virulence and detecting lesions in spleen and testis of mice inoculated with the B. melitensis LVM31 mutant strain. In addition, we evaluated the conferred protection in mice immunized with the mutant strain against the challenge with the B. melitensis Bm133 virulent strain. Our results showed that the mutation of omp31 caused a decrease in splenic colonization without generating apparent lesions or histopathological changes apparent in both organs in comparison with the control strains and that the mutant strain conferred similar protection as the B. melitensis Rev1 vaccine strain against the challenge with B. melitensis Bm133 virulent strain. These results allow us to conclude that Omp31 plays an important role on the virulence of B. melitensis in the murine model, and due to the attenuation shown by the strain, it could be considered a vaccine candidate for the prevention of goat brucellosis.

Characterization of the Salmonella typhi Outer Membrane Protein C

  • Toobak, Hoda;Rasooli, Iraj;Gargari, Seyed Latif Mousavi;Jahangiri, Abolfazl;Nadoushan, Mohammadreza Jalali;Owlia, Parviz;Astaneh, Shakiba Darvish Alipour
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.128-134
    • /
    • 2013
  • Salmonella enterica serovar typhi, a Gram-negative food-borne pathogen, causes typhoid fever in humans. OmpC is an outer membrane porin of S. typhi expressed throughout the infection period. OmpC is potentially an attractive antigen for multivalent vaccines and diagnostic kit designs. In this study we combined in silico, in vitro and in vivo approaches to analyze various aspects of OmpC's antigenic properties. The conserved region, in addition to secondary and tertiary structures, and linear B cell epitopes, were predicted. A number of results obtained from in silico analyses were validated by experimental studies. OmpC was amplified, cloned and then expressed, with the recombinant protein then being purified. BALB/c mice were immunized by purified denatured OmpC. The titer of antibody was raised. Results of challenges with the pathogen revealed that the immunity is non-protective. Most of the theoretical and experimental results were in consensus. Introduced linear B cell epitopes can be employed for the design of diagnostic kits based on antigen-antibody interactions.

Genetic Variations of Outer Membrane Protein Genes of Vibrio harveyi Isolated in Korea and Immunogenicity of OmpW in Olive Flounder, Paralichthys olivaceus (한국에서 분리된 Vibrio harveyi 외막단백질의 유전적 차이와 넙치(Paralichthys olivaceus)에 대한 OmpW의 면역원성 분석)

  • KIM, Myoung-Sug;JIN, Ji-Woong;JUNG, Sung-Hee;SEO, Jung-Soo;HONG, Suhee
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.27 no.5
    • /
    • pp.1508-1521
    • /
    • 2015
  • Vibrio harveyi is a pathogenic marine bacterium causing systemic symptoms resulting in mass mortalities in fishes and shrimps in aquaculture. Outer membrane proteins(OMPs) are related to the pathogenicity and thus good targets for diagnosis and vaccination for Gram negative bacteria. Recently vaccination strategies using the OMPs have been suggested to control vibriosis in several fish species. In this study, we have isolated V. harveyi from diseased marine fishes from different regions of Korea and investigated genetic variations of four OMP genes including OmpK, OmpU, OmpV and OmpW. Consequently, OmpK and U genes could be divided into 3 subgroups of type I, II, III and type A, B, C, respectively, without any correlation with geographical regions and species while OmpV and W were highly homologous. OmpW gene of V. harveyi FP4138 was fully sequenced and predicted the deduced amino acid sequence to form ${\beta}-barrel$ with hydrophobic channel. Indeed, the immunogenicity of recombinant OmpW produced in Escherichia coli was assessed by vaccinating flounder. As a result, the high antibody response with antibody titer of $4.2{\pm}0.7$ and protection with relative percent survival of 60% against artificial infection of V. harveyi were demonstrated. This result indicates that OmpW is a virulence related factor and it can be a vaccine candidate to prevent a high mortality caused by V. harveyi infection in olive flounder, Paralichthys olivaceus.

Distribution of Rickettsia spp. in Ticks from Northwestern and Southwestern Provinces, Republic of Korea

  • Jiang, Ju;Choi, Yeon-Joo;Kim, Jeoungyeon;Kim, Heung-Chul;Klein, Terry A;Chong, Sung-Tae;Richards, Allen L.;Park, Hye-Jin;Shin, Sun-Hye;Song, Dayoung;Park, Kyung-Hee;Jang, Won-Jong
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.2
    • /
    • pp.161-166
    • /
    • 2019
  • This study was done to characterize distribution of Rickettsia spp. in ticks in the northwestern and southwestern provinces in the Republic of Korea. A total of 2,814 ticks were collected between May and September 2009. After pooling, 284 tick DNA samples were screened for a gene of Rickettsia-specific 17-kDa protein using nested PCR (nPCR), and produced 88 nPCR positive samples. Of these positives, 75% contained 190-kDa outer membrane protein gene (ompA), 50% 120-kDa outer membrane protein gene (ompB), and 64.7% gene D (sca4). The nPCR products of ompA, ompB, and sca4 genes revealed close relatedness to Rickettsia japonica, R. heilongjiangensis, and R. monacensis. Most Rickettsia species were detected in Haemaphysalis longicornis. This tick was found a dominant vector of rickettsiae in the study regions in the Republic of Korea.

Protective Effect of Cheonjeongkibo-Dan UV-Induced Cellular Damage in Human Dermal Fibroblast (천정기보단(天精氣保丹)의 자외선에 의한 세포 손상 억제 효과)

  • Lee, Ghang-Tai;Park, Si-Jun;Lee, Jung-No;Lee, Kwang-Sik;Kim, Dae-Sung;Mun, Yeun-Ja;Lee, Kun-Kuk;Woo, Won-Hong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.950-955
    • /
    • 2010
  • In this study, we prepared CheonJeongKiBo-Dan(7 oriental medicinal plants, 7OMP: Astragalus Membranaceus root, Panax Ginseng root, Glycyrrhiza Glabra (licorice) root, Schizandra Chinensis fruit, Polygonatum Odoratum, Rehmannia Glutinosa root, Paeonia Albiflora root) by extracting them in one reactor and studied its efficacies on skin. UV irradiation has been suggested as a major cause of photoaging in skin. In order to investigate protective effects against UV-B induced cellular damage, 7OMP was extracted with 70% ethanol and dissolved in DMSO. The protective effect was detected by MTT assay, reactive oxygen species (ROS) generation, phosphorylation of ATR and p53 in human dermal fibroblast cell system after UV-B irradiation. 7OMP reduced UV-B-induced cellular damage in HDFs cells, and inhibited ROS generation. UV-B-induced toxicity accompanying ROS production and the resultant DNA damage are responsible for activation of ATR, p53 and Bad. In this study, 7OMP hampered phosphorylations of ATR and p53 in human dermal fibroblasts. Therefore, 7OMP may be protective against UV-induced skin photoaging.

Induction of Immune Responses by Two Recombinant Proteins of Brucella abortus, Outer Membrane Proteins 2b Porin and Cu/Zn Superoxide Dismutase, in Mouse Model

  • Sung, Kyung Yong;Jung, Myunghwan;Shin, Min-Kyoung;Park, Hyun-Eui;Lee, Jin Ju;Kim, Suk;Yoo, Han Sang
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.854-861
    • /
    • 2014
  • The diagnosis of Brucella abortus is mainly based on serological methods using antibody against LPS, which has diagnostic problems. Therefore, to solve this problem, we evaluated two proteins of B. abortus, Cu/Zn superoxide dismutase (SodC) and outer membrane proteins 2b porin (Omp2b). The genes were cloned and expressed in a pMAL system, and the recombinant proteins, rOmp2b and rSodC, were purified as fusion forms with maltose-binding protein. The identity of the proteins was confirmed by SDS-PAGE and Western blot analysis with sera of mice infected with B. abortus. Production of cytokines and nitric oxide (NO) was investigated in RAW 264.7 cells and mouse splenocytes after stimulation with the proteins. Moreover, cellular and humoral immune responses were investigated in BALB/c mice after immunization with the proteins. TNF-${\alpha}$, IL-6, and NO were significantly inducible in RAW 264.7 cells. Splenocytes of naive mice produced IFN-${\gamma}$ and IL-4 significantly by stimulation. Moreover, number of IgG, IFN-${\gamma}$, and IL-4 producing cells were increased in immunized mice with the two proteins. Production of IgG and IgM with rOmp2b was higher than those with rSodC in immunized mice. These results suggest that the two recombinant proteins of B. abortus may be potential LPS-free proteins for diagnosis.

Effect of Cimetidine and Phenobarbital on Metabolite Kinetics of Omeprazole in Rats

  • Park Eun-Ja;Cho Hea-Young;Lee Yong-Bok
    • Archives of Pharmacal Research
    • /
    • v.28 no.10
    • /
    • pp.1196-1202
    • /
    • 2005
  • Omeprazole (OMP) is a proton pump inhibitor used as an oral treatment for acid-related gastrointestinal disorders. In the liver, it is primarily metabolized by cytochrome P-450 (CYP450) isoenzymes such as CYP2C19 and CYP3A4. 5-Hyroxyomeprazole (5-OHOMP) and omeprazole sulfone (OMP-SFN) are the two major metabolites of OMP in human. Cimetidine (CMT) inhibits the breakdown of drugs metabolized by CYP450 and reduces, the clearance of coad-ministered drug resulted from both the CMT binding to CYP450 and the decreased hepatic blood flow due to CMT. Phenobarbital (PB) induces drug metabolism in laboratory animals and human. PB induction mainly involves mammalian CYP forms in gene families 2B and 3A. PB has been widely used as a prototype inducer for biochemical investigations of drug metabolism and the enzymes catalyzing this metabolism, as well as for genetic, pharmacological, and toxicological investigations. In order to investigate the influence of CMT and PB on the metabolite kinetics of OMP, we intravenously administered OMP (30 mg/kg) to rats intraperitoneally pretreated with normal saline (5 mL/kg), CMT (100 mg/kg) or PB (75 mg/kg) once a day for four days, and compared the pharmacokinetic parameters of OMP. The systemic clearance ($CL_{t}$) of OMP was significantly (p<0.05) decreased in CMT-pretreated rats and significantly (p<0.05) increased in PB-pretreated rats. These results indicate that CMT inhibits the OMP metabolism due to both decreased hepatic blood flow and inhibited enzyme activity of CYP2C19 and 3A4 and that PB increases the OMP metabolism due to stimulation of the liver blood flow and/or bile flow, due not to induction of the enzyme activity of CYP3A4.

Immunological Characterization of Full and Truncated Recombinant Clones of ompH(D:4) Obtained from Pasteurella multocida (D:4) in Korea

  • Kim, Young-Hwan;Cheong, Ki-Young;Shin, Woo-Seok;Hong, Sung-Youl;Woo, Hee-Jong;Kwon, Moo-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1529-1536
    • /
    • 2006
  • We cloned a gene of ompH(D:4) from pigs infected with P. multocida D:4 in Korea [16]. The gene is composed of 1,026 nucleotides coding 342 amino acids (aa) with a signal peptide of 20 aa (GenBank accession number AY603962). In this study, we analyzed the ability of the ompH(D:4) to induce protective immunity against a wild-type challenge in mice. To determine appropriate epitope(s) of the gene, one full and three different types of truncated genes of the ompH(D:4) were constructed by PCR using pET32a or pRSET B as vectors. They were named ompH(D:4)-F (1,026 bp [1-1026] encoding 342 aa), ompH(D:4)-t1 (693 bp [55-747] encoding 231 aa), ompH(D:4)-t2 (561 bp [187-747] encoding 187 aa), and ompH(D:4)-t3 (540 bp [487-1026] encoding 180 aa), respectively. The genes were successfully expressed in Escherichia coli BL21(DE3). Their gene products, polypeptides, OmpH(D:4)-F, -t1, -t2, and -t3, were purified individually using nickel-nitrilotriacetic acid (Ni-NTA) affinity column chromatography. Their $M_rs$ were determined to be 54.6, 29, 24, and 23.2 kDa, respectively, using SDS-PAGE. Antisera against the four kinds of polypeptides were generated in mice for protective immunity analyses. Some $50{\mu}g$ of the four kinds of polypeptides were individually provided intraperitoneally with mice (n=20) as immunogens. The titer of post-immunized antiserum revealed that it grew remarkably compared with pre-antiserum. The lethal dose of the wild-type pathogen was determined at $10{\mu}l$ of live P. multocida D:4 through direct intraperitoneal (IP) injection, into post-immune mice (n=5, three times). Some thirty days later, the lethal dose ($10{\mu}l$) of live pathogen was challenged into the immunized mouse groups [OmpH(D:4)-F, -t1, -t2, and -t3; n=20 each, two times] as well as positive and negative control groups. As compared within samples, the OmpH(D:4)-F-immunized groups showed lower immune ability than the OmpH(D:4)-t1, -t2, and -t3. The results show that the truncated-OmpH(D:4)-t1, -t2, and -t3 can be used for an effective vaccine candidate against swine atrophic rhinitis caused by pathogenic P. multocida (D:4) isolated in Korea.