• Title/Summary/Keyword: oligosaccharides(G2∼G7)

Search Result 35, Processing Time 0.025 seconds

${\alpha}$-Galactosidase from Bacillus megaterium VHM1 and Its Application in Removal of Flatulence-Causing Factors from Soymilk

  • Patil, Aravind Goud G.;Kumar S.K., Praveen;Mulimani, Veerappa H.;Veeranagouda, Yaligara;Lee, Kyoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.11
    • /
    • pp.1546-1554
    • /
    • 2010
  • A bacterial strain capable of producing extracellular ${\alpha}$-galactosidase was isolated from a sample of sugarcane industrial waste. Microbiological, physiological, and biochemical studies revealed that the isolate belonged to Bacillus sp. Furthermore, based on a 16S rDNA sequence analysis, the new isolate was identified as Bacillus megaterium VHM1. The production of ${\alpha}$-galactosidase was optimized based on various physical culture conditions. Guar gum and yeast extract acted as the best carbon and nitrogen sources, respectively. The optimum pH was 7.5 and the enzyme remained stable over a pH range of 5-9. The enzyme was optimally active at $55^{\circ}C$ and thermostable with a half-life of 120 min, yet lost 90% of its residual activity within 120 min at $60^{\circ}C$. One mM concentrations of $Ag^2$, $Cu^2$, and $Hg^{2+}$ strongly inhibited the ${\alpha}$-galactosidase, whereas the metal ions $Fe^2$, $Mn^{2+}$, and $Mg^{2+}$ had no effect on the ${\alpha}$-galactosidase activity, and $Zn^{2+}$, $Ni^{2+}$, and $Ca^{2+}$ reduced the enzyme activity slightly. When treated with the B. megaterium VHM1 enzyme, the flatulence-causing sugars in soymilk were completely hydrolyzed within 1.5 h.

Genotype and Environment Influence on Raffinose and Stachyose Content of Soybean Seed (콩 종자의 Raffinose 및 Stachyose 함량에 대한 유전자형과 환경의 영향)

  • Sung, Mi Kyung;Han, Sung Jin;Seo, Hyung Jin;Choi, Sang Woo;Nam, Sang Hae;Chung, Jong Il
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.3
    • /
    • pp.319-324
    • /
    • 2014
  • Soybean (Glycine max (L.) Merr.) is an important crop for protein, oil, carbohydrates, isoflavones, and many other nutrients to humans and animals. But, antinutritional factors in the raw mature soybean are exist. Raffinose and stachyose are main antinutritional factors in soybean seed. Both raffinose and stachyose are carbohydrates, belonging to the raffinose family of oligosaccharides (RFOs). RFOs are not readily digested in humans and cause flatulence or diarrhea. The objective of this research is to obtain the information on raffinose and stachyose content according to genotype and environment. A total of twenty two soybean genotypes (11 cultivars, 3 germplasms and 8 breeding lines) were selected. Each genotype was grown in the field for two years with two replications and harvested in bulk at natural maturity for two years. Content of raffinose and stachyose was detected by HPLC. The raffinose content (g/kg) of 22 genotypes was $2.68{\pm}0.21-5.87{\pm}2.43$ in year 1 and was $3.24{\pm}0.37-9.05{\pm}0.16$ in year 2. The stachyose content (g/kg) was $4.23{\pm}0.98-27.68{\pm}9.90$ at year 1 and was $5.11{\pm}1.09-25.32{\pm}0.35$ in year 2. Genotype and environment have highly significant effects on raffinose and stachyose content. Three genotypes (Da-7, 116-13, and RS-78) have low stachyose content at 5% significant level in two years. A positive correlation ($R^2=0.1985^*$) between raffinose and stachyose was observed in year 2. These informations are valuable in soybean genetics and breeding program related with raffinose and stachyose content.

Changes in oligosaccharide content during the storage period of maesil cheong formulated with functional oligosaccharides (기능성 올리고당으로 제조한 매실청의 저장기간 중 올리고당 함량 변화)

  • Bae, Moon-Joo;Yoo, Sang-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.51 no.2
    • /
    • pp.169-175
    • /
    • 2019
  • This study was carried out to produce the health functional food maesil cheong by replacing sucrose with isomaltooligosaccharide and fructooligosaccharide. The substitution levels of these oligosaccharides were between 10% and 100%. A 1:1 (w/w) mixture of maesil and sugar was adopted for preparing maesil cheong. The pH of maesil cheong remained unchanged (between 2.72 and 3.00) during 90-day storage period, regardless of oligosaccharide content. Citric and malic acids were identified in maesil cheong; citric acid accounted for 71-82% of the total organic acid content. Sucrose was completely liquefied in the sample after 30 days and was hydrolyzed steadily into fructose and glucose over the storage period. More than 75% of isomaltooligosaccharides remained in maesil cheong after 90 days when sucrose was completely replaced with isomaltooligosaccharide. However, fructooligosaccharides were mostly decomposed at the end of storage period. Thus, isomaltooligosaccharides may be suitable for acidic maesil cheong products to expect its health functional effect.

Purification and Properties of ${\beta}-Mannanases$ from Germinated Guar Bean (${\beta}-Mannanase$ 군(群)의 정제(精製) 및 그들의 성질(性質)에 관(關)한 연구(硏究))

  • Lee, Su-Rae
    • Applied Biological Chemistry
    • /
    • v.7
    • /
    • pp.1-13
    • /
    • 1966
  • 1) Three ${\beta}-1$, 4-mannanases were isolated from germinated guar bean through extraction, ammonium sulfate fractionation, column chromatography on cellulose derivatives and gel filltration on Sephadex G-100. They were designated as ${\beta}-1$, 4-mannanase A,B and C, respectively, in the order of isolation. 2) These enzymes were different in several aspects such as pH optimum, effect of metal ions, adsorbability on cellulose derivatives, molecular weight, Michaelis constant toward reduced ivory nut mannan A, mode of action and extent of hydrolysis of the mannan. 3) ${\beta}-1$, 4-Mannanases A and C were proposed to be two different endo-enzymes of random-splitting type producing a series of oligosaccharides from ${\beta}-1$, 4-mannans. ${\beta}-1$, 4-Mannanase B was suggested to be possibly an exe-type enzyme catalyzing a stepwise splitting from the non-reducing end of ${\beta}-1$, 4-mannans to produce mannose. 4) Guaran was subjected to hydrolysis by the purified enzymes and the consequence was discussed in connection with structural requirements of the enzymes toward substituted ${\beta}-1$, 4-mannans and their role in germinating guar seeds.

  • PDF

The Optimal Production and Characteristics of an Alginate-degrading Enzyme from Vibrio sp. PKA 1003 (Vibrio sp. PKA 1003의 알긴산 분해 조효소 생산 최적 조건과 조효소의 특성)

  • Kim, Hyun-Jee;Kim, Koth-Bong-Woo-Ri;Kim, Dong-Hyun;SunWoo, Chan;Jung, Seul-A;Jeong, Da-Hyun;Jung, Hee-Ye;Lim, Sung-Mee;Ahn, Dong-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.3
    • /
    • pp.434-440
    • /
    • 2013
  • This study was conducted to screen the characteristics and alginate-degrading activity of marine bacterium isolated from brown seaweed (Sargassum thunbergii). The results of 16S ribosomal RNA sequence analysis the strain the genus Vibrio and the strain was subsequently named Vibrio sp. PKA 1003. The optimum culture conditions for the growth of Vibrio sp. PKA 1003 were at pH 7, 3% NaCl, $25^{\circ}C$, and 6% alginic acid, with a 48-hour incubation time. A crude enzyme preparation from Vibrio sp. PKA 1003, showed its highest levels of alginate-degradation activity when cultured at pH 9, $30^{\circ}C$, and 6% alginic acid, with a 63-hour incubation time. Thin layer chromatography analyses confirmed that the crude enzyme released monomers or oligomers from sodium alginate, and results from trypsin treatment showed that the alginate degrading activity depends on this enzyme produced by Vibrio sp. PKA 1003. These results suggest that Vibrio sp. PKA 1003 and its alginate-degrading crude enzyme is useful for the production of alginate oligosaccharides.