• Title/Summary/Keyword: oligomerization

Search Result 97, Processing Time 0.025 seconds

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Catalytic Reactions of 3-Phenyl-2-propen-1-ol with Perchloratocarbonylbis (triphenylphosphine) rhodium (I)$^\dag$

  • Park, Jeong-Han;Chin, Chong-Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.324-328
    • /
    • 1987
  • Reaction of Rh $(ClO_4)(CO)(PPh_3)_2$ (1) with trans-$C_6H_5CH = CHCH_2OH$ (2) produces a new cationic rhodium(Ⅰ) complex, $[Rh(trans-C_6H_5CH = CHCHO)(CO)(PPh_3)_2]ClO_4$ (3) where 2 is coordinated through the oxygen atom but not through the olefinic group. At room temperature under nitrogen, complex 1 catalyzes dehydrogenation, hydrogenolysis, and isomerization of 2 to give $trans-C_6H_5CH$ = CHCHO (4), trans-$C_6H_5CH = CHCH_3$ (5) and $C_6H_5CH_2CH_2CHO$ (6), respectively, and oligomerization of 2 whereas under hydrogen, complex 1 catalyzes hydrogenation of 2 to give $C_6H_5CH_2CH_2CH_2OH$ (7) and hydrogenolysis of 2 to 5 which is further hydrogenated to $C_6H_5CH_2CH_2CH_3$ (8). The dehydrogenation and hydrogenolysis of 2 with 1 suggest an interaction between the rhodium and the oxygen atom of 2, whereas the isomerization and hydrogenation of 2 with 1 indicate an interaction between the rhodium and the olefinic system of 2.

Diffusion-based determination of protein homodimerization on reconstituted membrane surfaces

  • Jepson, Tyler A.;Chung, Jean K.
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.157-163
    • /
    • 2021
  • The transient interactions between cellular components, particularly on membrane surfaces, are critical in the proper function of many biochemical reactions. For example, many signaling pathways involve dimerization, oligomerization, or other types of clustering of signaling proteins as a key step in the signaling cascade. However, it is often experimentally challenging to directly observe and characterize the molecular mechanisms such interactions-the greatest difficulty lies in the fact that living cells have an unknown number of background processes that may or may not participate in the molecular process of interest, and as a consequence, it is usually impossible to definitively correlate an observation to a well-defined cellular mechanism. One of the experimental methods that can quantitatively capture these interactions is through membrane reconstitution, whereby a lipid bilayer is fabricated to mimic the membrane environment, and the biological components of interest are systematically introduced, without unknown background processes. This configuration allows the extensive use of fluorescence techniques, particularly fluorescence fluctuation spectroscopy and single-molecule fluorescence microscopy. In this review, we describe how the equilibrium diffusion of two proteins, K-Ras4B and the PH domain of Bruton's tyrosine kinase (Btk), on fluid lipid membranes can be used to determine the kinetics of homodimerization reactions.

Panax ginseng as a potential therapeutic for neurological disorders associated with COVID-19; Toward targeting inflammasome

  • Seo Won Shin;Ik Hyun Cho
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.23-32
    • /
    • 2023
  • Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by a severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). SARS-CoV-2 infection may cause clinical manifestations of multiple organ damage, including various neurological syndromes. There are currently two oral antiviral drugs-Paxlovid and molnupiravir-that are recognized to treat COVID-19, but there are still no drugs that can specifically fight the challenges of SARS-CoV-2 variants. Nucleotide-binding oligomerization domain-like receptor pyrin domain-containing-3 (NLRP3) inflammasome is a multimolecular complex that can sense heterogeneous pathogen-associated molecular patterns associated with neurological disorders. The NLRP3 activation stimulates the production of caspase-1-mediated interleukin (IL)-1β, IL-18, and other cytokines in immune cells. Panax (P.) ginseng is a medicinal plant that has traditionally been widely used to boost immunity and treat various pathological conditions in the nervous system due to its safety and anti-inflammatory/oxidant/viral activities. Several recent reports have indicated that P. ginseng and its active ingredients may regulate NLRP3 inflammasome activation in the nervous system. Therefore, this review article discusses the current knowledge regarding the pathogenesis of neurological disorders related to COVID-19 and NLRP3 inflammasome activation and the possibility of using P. ginseng in a strategy targeting this pathway to treat neurological disorders.

M Protein from Dengue virus oligomerizes to pentameric channel protein: in silico analysis study

  • Ayesha Zeba;Kanagaraj Sekar;Anjali Ganjiwale
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.41.1-41.11
    • /
    • 2023
  • The Dengue virus M protein is a 75 amino acid polypeptide with two helical transmembranes (TM). The TM domain oligomerizes to form an ion channel, facilitating viral release from the host cells. The M protein has a critical role in the virus entry and life cycle, making it a potent drug target. The oligomerization of the monomeric protein was studied using ab initio modeling and molecular dynamics simulation in an implicit membrane environment. The representative structures obtained showed pentamer as the most stable oligomeric state, resembling an ion channel. Glutamic acid, threonine, serine, tryptophan, alanine, isoleucine form the pore-lining residues of the pentameric channel, conferring an overall negative charge to the channel with approximate length of 51.9 Å. Residue interaction analysis for M protein shows that Ala94, Leu95, Ser112, Glu124, and Phe155 are the central hub residues representing the physicochemical interactions between domains. The virtual screening with 165 different ion channel inhibitors from the ion channel library shows monovalent ion channel blockers, namely lumacaftor, glipizide, gliquidone, glisoxepide, and azelnidipine to be the inhibitors with high docking scores. Understanding the three-dimensional structure of M protein will help design therapeutics and vaccines for Dengue infection.

Osteoclasts in the Inflammatory Arthritis: Implications for Pathologic Osteolysis

  • Youn-Kwan Jung;Young-Mo Kang;Seungwoo Han
    • IMMUNE NETWORK
    • /
    • v.19 no.1
    • /
    • pp.2.1-2.13
    • /
    • 2019
  • The enhanced differentiation and activation of osteoclasts (OCs) in the inflammatory arthritis such as rheumatoid arthritis (RA) and gout causes not only local bone erosion, but also systemic osteoporosis, leading to functional disabilities and morbidity. The induction and amplification of NFATc1, a master regulator of OC differentiation, is mainly regulated by receptor activator of NF-κB (RANK) ligand-RANK and calcium signaling which are amplified in the inflammatory milieu, as well as by inflammatory cytokines such as TNFα, IL-1β and IL-6. Moreover, the predominance of CD4+ T cell subsets, which varies depending on the condition of inflammatory diseases, can determine the fate of OC differentiation. Anti-citrullinated peptide antibodies which are critical in the pathogenesis of RA can bind to the citrullinated vimentin on the surface of OC precursors, and in turn promote OC differentiation and function via IL-8. In addition to adaptive immunity, the activation of innate immune system including the nucleotide oligomerization domain leucine rich repeat with a pyrin domain 3 inflammasome and TLRs can regulate OC maturation. The emerging perspectives about the diverse and close interactions between the immune cells and OCs in inflammatory milieu can have a significant impact on the future direction of drug development.

Different modes of antibiotic action of homodimeric and monomeric bactenecin, a cathelicidin-derived antibacterial peptide

  • Lee, Ju-Yeon;Yang, Sung-Tae;Kim, Hyo-Jeong;Lee, Seung-Kyu;Jung, Hyun-Ho;Shin, Song-Yub;Kim, Jae-Il
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.586-592
    • /
    • 2009
  • The bactenecin is an antibacterial peptide with an intramolecular disulfide bond. We recently found that homodimeric bactenecin exhibits more potent antibacterial activity than the monomeric form and retains its activity at physiological conditions. Here we assess the difference in the modes of antibiotic action of homodimeric and monomeric bactenecins. Both monomeric and dimeric bactenecins almost completely killed both Staphylococcus aureus and E. coli within 10-30 min at concentrations of $8-16\;{\mu}M$. However, exposure to liposomes elicited an increase in the fluorescence quantum yield from a tryptophan-containing monomeric analog, while the homodimeric analog showed a significant reduction in fluorescence intensity. Moreover, unlike the monomer, the homodimer displayed apparent membrane-lytic activity enabling release of various sized dyes from liposomes, and rapidly and fully depolarized the S. aureus membrane. Together, our results suggest that homodimeric bactenecin forms pores in the bacterial membrane, while monomeric one penetrates through the membrane to target intracellular molecules/organelles.

Prolonged Exposure to Lipopolysaccharide Induces NLRP3-Independent Maturation and Secretion of Interleukin (IL)-1β in Macrophages

  • Hong, Sujeong;Yu, Je-Wook
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.1
    • /
    • pp.115-121
    • /
    • 2018
  • Upon sensing of microbial infections or endogenous danger signals in macrophages, inflammasome signaling plays a significant role in triggering inflammatory responses via producing interleukin (IL)-$1{\beta}$. Recent studies revealed that active caspase-1, a product of the inflammasome complex, causes maturation of inactive pro-IL-$1{\beta}$ into the active form. However, the underlying mechanism by which this leaderless cytokine is secreted into the extracellular space remains to be elucidated. In this study, we demonstrated that prolonged lipopolysaccharide (LPS) treatment to macrophages could trigger the unexpected maturation and extracellular release of IL-$1{\beta}$ through a nucleotide-binding oligomerization domain-like receptor family, pyrin domain-containing 3 (NLRP3)-independent manner. Short-term treatment (less than 6 h) of LPS induced robust production of the IL-$1{\beta}$ precursor form inside cells but did not promote the maturation and secretion of IL-$1{\beta}$ in bone marrow-derived macrophages or peritoneal macrophages. Instead, prolonged LPS treatment (more than 12 h) led to a significant release of matured IL-$1{\beta}$ with no robust indication of caspase-1 activation. Intriguingly, this LPS-triggered secretion of IL-$1{\beta}$ was also observed in NLRP3-deficient macrophages. In addition, this unexpected IL-$1{\beta}$ release was only partially impaired by a caspase-1 and NLRP3 inflammasome inhibitor. Collectively, our results propose that prolonged exposure to LPS is able to drive the maturation and secretion of IL-$1{\beta}$ in an NLRP3 inflammasome-independent manner.

Expression of Various Pattern Recognition Receptors in Gingival Epithelial Cells

  • Shin, Ji-Eun;Ji, Suk;Choi, Young-Nim
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.77-82
    • /
    • 2008
  • Innate immune response is initiated by the recognition of unique microbial molecular patterns through pattern recognition receptors (PRRs). The purpose of this study is to dissect the expression of various PRRs in gingival epithelial cells of differentiated versus undifferentiated states. Differentiation of immortalized human gingival epithelial HOK-16B cells was induced by culture in the presence of high $Ca^{2+}$ at increased cell density. The expression levels of various PRRs in HOK-16B cells were examined by realtime reverse transcription polymerase chain reaction (RTPCR) and flow cytometry. In addition, the expression of human beta defensins (HBDs) was examined by real time RT-PCR and the amounts of secreted cytokines were measured by enzyme linked immunosorbent assay. In undifferentiated HOK-16B cells, NACHT-LRR-PYDcontaining protein (NALP) 2 was expressed most abundantly, and toll like receptor (TLR) 2, TLR4, nucleotide-binding oligomerization domain (NOD) 1, and NOD2 were expressed in substantial levels. However, TLR3, TLR7, TLR8, TLR9, ICE protease-activating factor (IPAF), and NALP6 were hardly expressed. In differentiated cells, the levels of NOD2, NALP2, and TLR4 were different from those in undifferentiated cells at RNA but not at protein levels. Interestingly, differentiated cells expressed the increased levels of HBD-1 and -3 but secreted reduced amount of IL-8. In conclusion, the repertoire of PRRs expressed by gingival epithelial cells is limited, and undifferentiated and differentiated cells express similar levels of PRRs.

Expression and Characterization of CMCax Having β-1,4-Endoglucanase Activity from Acetobacter xylinum

  • Koo, Hyun-Min;Song, Sung-Hee;Pyun, Yu-Ryang;Kim, Yu-Sam
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.53-57
    • /
    • 1998
  • The CMCax gene from Acetobacter xylinum ATCC 23769 was cloned and expressed in E. coli. With this gene, three gene products - mature CMCax, CMCax containing signal peptide(pre-CMCax), and a glutathione-S-transferase(GST)-CMCax fusion enzyme - were expressed. CMCax and pre-CMCax are aggregated to multimeric forms which showed high CMC hydrolysis activity, whereas GST-CMCax was less aggregated and showed lower activity, indicating that oligomerization of CMCax controbutes to the cellulose hydrolysis activity to achieve greater efficiency. The enzyme was identified to be an $\beta$-1,4-endoglucanase, which catalyzes the cleavage of internal $\beta$-1,4-glycosidic bonds of cellulose. The reaction products, cellobiose and cellotriose, from cellopentaose as a substrate, were identified by HPLC. Substrate specificity of cellotetraose by this enzyme was poor, and the reaction products consisted of glucose, cellobiose, and cellotriose in a very low yield. Theses results suggested that cellopentaose might be the oligosaccharide substrate consisting of the lowest number of glucose. The optimum pH of CMCax and pre CMCax was about 4.5, whereas that of GST-CMCas was rather broad at pH 4.5-8. The physiological significance of cellulose-hydrolyzing enzyme, CMCax, having such low $\beta$-1,4-endoglucanase activity and low optimum pH in cellulose-producing A. xylinum is not clearly known yet, but it seems to be closely related to the production of cellulose.

  • PDF