• Title/Summary/Keyword: old hydraulic

Search Result 40, Processing Time 0.028 seconds

Hydraulic design of fuel pump in turbo-pump system and performance evaluation using CFD (터보펌프용 연료펌프의 설계와 CFD를 이용한 성능 평가)

  • Lee, Kyoung-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.408-416
    • /
    • 2002
  • Hydraulic performance of the pump with an inducer was predicted by 3-D Navier-stokes calculation. The evaluated pump was the single-stage centrifugal pump with a separated inducer to pressurize fuel (LCH4) in Turbo-pump system with a specific speed (Ns) of approximately 0.3[rad/s, m3/s, J/kg] and a suction specific speed(s) of 15[rad/s, m3/s, J/kg]. That conventional pump was designed with the combination of 1-D theory and empirical correlation. In this study, preliminary design to select key parameters such as inlet flow coefficient was reviewed by investigating sets of the known design methods to achieve appropriate suction performance, and the performance of newly designed inducer and impeller was compared with the old one, using CFD method. The numerical results showed that the hydraulic efficiency of the new pump was predicted $5.5\%$ higher than that of the conventional one, through design parameter re-selection, configuration improvement and blade loading control

  • PDF

Estimation for Changing of Hydraulic States Caused by Gate Expansion in Asan Bay (아산만 배수갑문 확장사업에 따른 아산만 해역의 수리특성 변화 검토)

  • Park, Byong-Jun;Song, Hyun-Ku;Song, Tae-Kwan;Jang, Eun-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.337-340
    • /
    • 2008
  • The gate expansion was planed to increase discharge capacity of gate structure at sea dike in Asan Bay. So it was estimated for changing of hydraulic states in Pyeongteak Harbor Zone caused by gate expansion, by 2D and 3D CFD Module. In result, influence of gate expansion was less than tidal current and discharge ratio between old gate and new gate was 4:6.

  • PDF

A Comparative Study on the Impermeability-reinforcement Performance of Old Reservoir from Injection and Deep Mixing Method through Laboratory Model Test (실내모형시험을 통한 지반혼합 및 주입공법의 노후저수지 차수 보강성능 비교 연구)

  • Song, Sang-Huwon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.24 no.2
    • /
    • pp.45-52
    • /
    • 2022
  • Of the 17,106 domestic reservoirs(as of December 2020), 14,611 are older than 50 years, and these old reservoirs will gradually increase over time. The injection grouting method is most applied to the reinforcement method of the aging reservoir. However, the injection grouting method is not accurate in uniformity and reinforced area. An laboratory model test was conducted to evaluate the applicability of the deep mixing method, which compensated for these shortcomings, as a reservoir reinforcement method. As a result of calculating the hydraulic conductiveity for each method through the model test results, the injection grouting method was calculated as a hydraulic conductiveity value that was about 7.5 times larger than that of the deep mixing method. As a result of measuring the water level change in the laboratory model test, it was found that the water level change decreased in the injection method and deep mixing method compared to the non-reinforcement method. In addition, deep mixing method showed a water level change of about 15% based on 40 hours compared to the injection method, indicating that the water-reducing effect was superior to that of the injection method.

Design of Unification of Power device of Stow-Net Fishing System -Unification of Power Device by Hydraulic Power- (안강망 어로 시스템 동력장치의 통합화 설계 -유압동력을 사용한 동력장치의 통합-)

  • 문덕홍
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.1
    • /
    • pp.65-76
    • /
    • 1999
  • Our status of off-shore stow-net fishery is in face with many difficult problems; the lack of fisherman by evading the 3-D occupation, the safety accident by unskilled crew and old type fishing system. In order to solve those problems, it is necessary to save the man power and ensure the safety of fishing work by the effective utilization of power and automatization of fishing gear system. This is consists of the side drum driven by main engine, the net hauler, the bow and stern capstan, jib crane etc. Therefore, we suggest the design on unification of power device of fishing gear system as follows; (1) fishing system by uni-hydraulic power and (2) fishing system by electric motor and electro-hydraulic power.

  • PDF

Ecophysiological Interpretations on the Water Relations Parameters of Trees(VIII) - The Hydraulic Architecture of Quercus mongolica (수목(樹木)의 수분특성(水分特性)에 관(關)한 생리(生理)·생태학적(生態學的) 해석(解析)(VIII) - 신갈나무의 수분통도성(水分通導性) 구조(構造) -)

  • Han, Sang Sup;Kim, Sun Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.120-129
    • /
    • 1996
  • This study was carried out to investigate the hydraulic architecture such as relative hydraulic conductivity, Leaf specific conductivity(LSC), Huber value, Specific conductivity of the stem, branch and Junctions of stem-to-branch in Quercus mongolica trees. The hydraulic architecture of various hydraulic conductivities of stem and branch was described. The results obtained were summarized as follows : 1. The range of relative hydraulic conductivity was $2.5526{\times}10^{-12}$ to $1.2260{\times}10^{-10}m^2$ in stems, $1.6279{\times}10^{-11}$ to $6.8378{\times}10^{-11}m^2$ in branches. The relative hydraulic conductivities increased with decreasing diameter of stem and branch. The relative hydraulic conductivity of one-year-old terminal shoots were two times greater than that of the lateral shoots. 2. LSC value was larger at the top than at the base in stem. LSC is much smaller in branches than in stem ; especially smallest at branching part. 3. Hydraulic conductivities of the branching part appeared the different values with the 4 type and 4 type. Relative hydraulic conductivity, LSC, Specific conductivity and mean vessel diameter in type branching part were larger in stem than in branch part, but not found in the branching part of Y type. 4. LSC and Specific conductivity of stem increased with decreasing diameter, but Huber value slowly increased with decreasing diameter ; especially highest at less than 1cm diameter. 5. LSC, Huber value, and mean diameter of vessels were larger at 1-year-old leader shoots than at lateral shoots. 6. The mean vessel diameter in various parts of a tree decreased with decreasing diameter of stem, but the number of vessels per unit area($mm^{-2}$) increased reversely. Mean vessel diameter in stem decreased sharply at earlywood and slowly at latewood with decreasing diameter of stem.

  • PDF

A Decision-Supporting Model for Rehabilitation of Old Water Distribution Systems

  • Kim, Joong-Hoon;Geem, Zong-Woo;Lee, Hyun-dong;Kim, Seong-Han
    • Korean Journal of Hydrosciences
    • /
    • v.8
    • /
    • pp.31-40
    • /
    • 1997
  • Flow carrying capacity of water distribution systems is getting reduced by deterioration of pipes in the systems. The objective of this paper is to present a managerial decision-making model for the rehabilitation of water distribution systems with a mininum cost. The decisions made by the model also satisfy the requirements for discharge and pressure at demanding nodes in the systems. Replacement cost, pipe break repair cost, and pumping cost are considered in the economic evaluation of the decision along with the break rate and the interest rate to determine the optimal replacement time for each pipe. Then, the hydraulic integrity of the water distribution system is checked for the decision by a pipe network simulator, KYPIPE, if discharge and pressure requirements are satisfied. In case the system does not satisfy the hydraulic requirements, the decision made for the optimal replacement time is revised until the requirments are satisfied. The model is well applied to an existing water distribution system, the Seoul Metropolitan Water Supply System (1st Phase). The results show that the decisions for the replacement time determined by the economic analysis are accepted as optimal and hydraulic integrity of the system is in good condition.

  • PDF

Development of the Pipe Construction Robot for Rehabilitation Work Process of the Water Pipe Lines (상수도 배관의 갱생 공정을 위한 배관 건설 로봇 개발)

  • Jeong, Myeong-Su;Lee, Jaeyoul;Hong, Sung-Ho;Jang, Minwoo;Shin, Dongho;Hahm, Jehun;Seo, Kap-Ho;Seo, Jin-Ho
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.3
    • /
    • pp.223-231
    • /
    • 2021
  • In this paper describes the research and development of a pipe robot for pipe rehabilitation construction of old water pipes. After the water supply pipe construction, the pipe is leaking, damaged, and aging due to corrosion. Eventually, resistance to the flow of water in lower supply efficiency and contaminated water such as rusty water, finally in various consumer complaints. In order to solve this problem, rehabilitation construction robot technology is required to secure the construction quality of pipe rehabilitation construction and restore the function of the initial construction period. The developed pipe rehabilitation construction robot required a hydraulic actuator for high traction and was equipped with a small hydraulic supply device. In addition, we have developed a hydraulic cylinder and a link system that supports the pipe inner diameter to develop a single pipe robot corresponding to 500 to 800mm pipe diameter. The analysis and experimental verification of the driving performance and unit function of the developed pipe reconstruction robot are explained, and the result of the integrated performance test of the pipe reconstruction robot at the water supply pipe network site is explained.

The quality condition of concrete in the hydraulic structures and a plan improving Quality (콘크리트 수리구조물의 품질상태와 개선방향)

  • Park, Kwang-Su;Shin, Su-Kyun;Kim, Kwan-Ho;Lee, Joon-Gu;Kim, Meyong-Won;Jang, Dan-Gum
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.407-410
    • /
    • 2003
  • The actual quality of the concrete in the structure for Irrigation may differ from that represented by the cylinders because the age, consolidation, or curing of the in-place material may not be well represented by the standard test specimens. The objective of this paper is to offer a base data of specification is the best fit the ready-mixed concrete strength to the specified, and to address this deficiency, so that the strength information of the concrete in the structure for Irrigation can be rationally accounted for in the assessment of the quality condition of this. The strength of concrete in the hydraulic structures is checked using strength of core obtained from that, and 28-day-old cylinder strength is analyzed using cylinder data of the ready-mixed concrete.

  • PDF

Estimation of Compressive Strength for Existing Concrete Structures by Non-Destructive Tests (비파괴시험에 의한 기존 콘크리트 구조물의 압축강도 추정)

  • 구봉근;오병환;김영의;김태봉;한승환
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.159-172
    • /
    • 1994
  • The relmund hammer test and ultrasonic pulse velocity test methods are commonly used to determine the in-situ compressive strength of concrete. One of the special feature of these methods is that they cannot give consistent and reliable results for variety of structures. In particular, very old existing structures have been generally received sreious environmental affectsand thus the strength prediction will be different from normal structures. The purpose of the present study is, therefore, to propose realistic equations to predict the in-situ strengths of actual old concrete structures. The rebound hammer and ultrasonic pulse velocity tests, carbonation depth measurments and core compressive strength measurements have been carried out for very old hydraulic and seacoast concrete structures spanning from one to about seventy years in age. From these test results, the strength-rebound number relations, the strength-pluse velocity relatinns and the strength-rebound number-pluse velocity relations have been obtained through multiple regression analysis. The present study indicates that the existing equations by nondestructive tests give quite different results from the present data. The proposed equations reasonably well predict the measured data for old concrete structures, especially for low strength concrete. The prediction equations proposed here can be efficiently used in determining the in-situ strength of old concrete structures.

Old Service Pipe Cleaning of Polly-pigs Cleaning technique (Polly-pigs를 이용한 노후급수관의 세관에 관한 연구)

  • Lee, Hyun-Dong;Bae, Chul-Ho;Park, Jeong-Hoon;Kim, Gil-Nam
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.303-312
    • /
    • 2002
  • Polly-pigs technique was developed to remove internal rusts and scales from service pipes in the building by using Polly-pigs that were used as various applications in conventional plant pipelines. Results of cleaning experiments on 15mm GSP(Galvanic Steel Pipe) showed that hydraulic cross sectional area was more increased from 3.5% to 15.4% for straight part or elbow parts of several test pieces. Results of optical analysis also showed that rust and scale removed mostly by KDP series(only consisted of Polyurethane) were outside red colored scale ($Fe_2O_3{\cdot}H_2O$), and there was a limitation to the removal of black colored scale($Fe_2O{\cdot}nH_2O$) that was below red colored scale. But it was evaluated that KDPS series coated fine sand with KDP series could remove not only red colored scale but also black colored scale and more increase hydraulic cross sectional areas of 15mm GSP old service pipes from 13.0% to 17.9%. After KDPS series cleaning, hydraulic cross sectional areas of them were recovered from 95.9% to 99.5%. Turning force of Polly-pigs was largely improved by the effect of Helical guide vane(Cleaning v/v) and Rotating wing(Pigs), and the number of pig rotating also more increased sixteen times compared with conventional cleaning system without Helical guide vane and Rotating wing. After KDPC series cleaning of 100mm GSP old service pipes that hydraulic cross sectional areas were 90%, hydraulic cross sectional areas were almost recovered perfectly like new service pipes. Additionally pressure necessary to run Polly-pigs m 100mm GSP was lower and cleaning efficiency also was higher than 15mm GSP cleaning. Therefore it was thought that as the diameter of pipe was more increased, pressure necessary to clean service pipes was more decreased and cleaning efficiency was more increased in Polly-pigs cleaning.