• Title/Summary/Keyword: oil-degradation

Search Result 405, Processing Time 0.027 seconds

Effects of Nutritional Sources on Degradation of Polychlorinated Biphenyls (PCBs) by Pseudomonas sp. P2 (Pseudomonas sp. P2에 의한 Polychlorinated Biphenyls(PCBs) 분해에 대한 영양원의 영향)

  • 최상기;금정호
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.611-617
    • /
    • 1996
  • The effects of nutritional sources on growth of Pseudomonas sp. P2 were investigated in medium containing biphentyl as a carbon source. To determine characterization of Pseudomonas sp. P2, the incubation time was determined to 100 h of the log phase in the growth curve. The optimal compositions for the growth of Pseudomonas sp. P2 degrading polychlorinated biphenyls (PCBs) were 1000 mg/L $NH_4NO_3$, 1000mg/L KH_2PO_4$, 100mg/L MgSO_4$.$7H_2O$, 30mg/L $CaCl_2$.$2H_2O$, 200mg/L NaCl, and 10mg/L $FeSO_4$.$7H_2O$. Pseudomonas sp. P2 showed the degradability of 59.3%, 57.6%, 51.4%, and 48.7% at 500mg/L, 1000mg/L, 1500mg/L, and 2000mg/L of the PCBs within insulating oil after 100 h incubation under the optimum conditions, respectively.

  • PDF

Effect of Environmental Parameters on the Degradation of Petroleum Hydrocarbons in Soil (환경인자가 토양내 석유계탄화수소의 분해에 미치는 영향)

  • 황의영;남궁완;박준석
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.1
    • /
    • pp.85-96
    • /
    • 2000
  • The purpose of this study was to Investigate the effect of environmental conditions on the degradation of total petroleum hydrocarbons(TPH) in soil. The soil used for this study was sandy loam. Target contaminant, diesel oil, was spiked at 10.000mgTPH/kg dry soil. Moisture content was controlled to 50%, 70%, and 90% of field capacity of the soil. Temperature was controlled to $5^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, and $30^{\circ}C$. The active degradation of TPH was observed at the moisture contents of 50% and 70% of field capacity, and temperature of $10^{\circ}C$ to $30^{\circ}C$. Degradation rate of n-alkanes was about two times greater than that of TPH. Volatilization loss of TPH was about 2% of initial concentration. Biocide control and no aeration experiments indicated that removal of TPH was primarily occurred by biodegradation under aerobic condition.

  • PDF

Biodegradation of JP-8 in soil column by Rhodococcus fascians isolated from petroleum contaminated soil (유류 오염 토양에서 분리된 Rhodococcus fascians 를 이용한 토양 column에서의 JP-8의 분해)

  • Park, Bong-Je;Noh, Yong-Ho;Yun, Hyun-Shik
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.479-483
    • /
    • 2008
  • The environmental contamination by organic pollutants is a widespread problem. The most widely distributed pollution can be attributed to oil contamination. Bioremediation, the use of microorganism or microbial processes to degrade environmental contaminant, is one of the new technologies. The objective of the present study is to study the degradation of JP-8 in soil by microorganism. The degradation of JP-8 was analysed by TPH using gas chromatography. Rhodococcus fascians isolated from the petroleum contaminated site was applied for the degradation of JP-8 in the soil column system. Air flow rate of 30 ml/min was sufficient to degrade JP-8 in the soil column as much as 70% of JP-8 in the soil column. The addition of nitrogen source resulted in the increase in JP-8 degradability to 75% of JP-8 and the C:N ratio for JP-8 degradation was 100:10.

Treatment Performance and Microbial Community Structure in BAC-process Treating Contaminated Groundwater by Water-soluble Cutting Oil (생물활성탄을 이용한 절삭유로 오염된 지하수의 처리특성과 미생물군집구조 해석)

  • Lim Byung-Ran;Bae Ci Ae;Lim Ho-Ju;Cho Chang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.71-76
    • /
    • 2006
  • Treatment performance and microbial community structure were investigated in water-soluble cutting oil treatment process using biological activated carbon. DOC removal in BACI column at $15^{\circ}C$ was higher than at $25^{\circ}C$, but those of BAC3 column after 60days was high at$25^{\circ}C$. Also, quinone content of first-step reactors at $25^{\circ}C$ and $15^{\circ}C$ was much the same, but those of the third-step reactor at $25^{\circ}C$ was higher than at $15^{\circ}C$. The dominant type of two apparatus was ubquinone (UQ)-l 0 followed by UQ-8. Menaquinones were detected from $25^{\circ}C$ apparatus and effluent. This suggested that DOC removal at $25^{\circ}C$ was advanced degradation by attached microorganisms on the activated carbon surface. The DOC removal in long-term activated carbon apparatus increased with going in BAC3 column. This indicated the influent of POC was a result of DOC removal efficiency decrease. Integrated DOC removal from start point in experiment to break point and quinone content were showed a tendency of increasing with going last-step activated carbon apparatus. Therefore, the biological activated carbon apparatus used by this study was effective treatment process in contaminated groundwater by water-soluble cutting oil.

Effect of Deodorizing Temperature on Physicochemical Characteristics in Corn Oil IV. Effect of Deodorizing Temperature on Volatile Flavor Component Composition in Corn Oil (탈취온도가 옥수수기름의 이화학적 특성에 미치는 영향 제4보, 탈취온도가 옥수수기름의 휘발성 냄새성분 변화에 미치는 영향)

  • 이근보;한명규;이미숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.3
    • /
    • pp.272-277
    • /
    • 1998
  • We carried out separation and guantitation of flavor components by GC about essential oils extracted from deodorized corn oil at the different deodorizing temperature. Flavor components were detected total 16 kinds included aldehydes of 8 kinds, major components were propane, pentane, hexanal etc. These major components content was about 70~75% of the total flavor components. According to rise of deodorizing temperature, both ethane and aldehydes of 8 kinds content were in proportion to increase, but propane, pentane, hexane, octan, pentyl furan content were decreased by contraries, respectively. On the other hand, total flavor component content was appeared the lowest level at 245$^{\circ}C$ treating group, aldehydes content was in proportion to increase according to rise of deodorizing temperature. These phenomenons consider that the undesirable reactions such as partial auto-oxidation, degradation, polymerization and hydrolysis etc. by effecting factors of stripping steam and vacuum degree. Conclusively, deodorizing temperature under high temperature was undesirable for the minimization of off-flavor materials.

  • PDF

Studies on the Physicochemical Characteristics of Sesame with Roasting Temperature (볶음과정에서의 참깨의 물리화학적 특성변화)

  • Kim, Hyeon-Wee;Jeong, So-Young;Woo, Sun-Ja
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.1137-1143
    • /
    • 1999
  • The change of physicochemical characteristics of sesame with roasting temperature$(110^{\circ}C{\sim}230^{\circ}C)$ were investigated to get a useful index which needs to manufacture roasted sesame and sesame oils, In the physicochemical properties of roasted sesame, the contents of moisture, specific volume, oil yields and sesame cakes were changed significantly above $170^{\circ}C$. Fat and protein in sesame cakes were changed slightly. Desirable roasting temperature was $220^{\circ}C$ in considering oil yields and sensory qualities. Total amino acids such as arginine, serine, threonine, lysine. cystine, tyrosine and most of the free amino acids, and sucrose of free sugars were reduced significantly above $170^{\circ}C$ and $190^{\circ}C$. respectively. These reductions of sugar and amino compounds were assumed to play an important role in Maillard reaction for the formation of browning pigment, taste and aroma. It was confirmed that this reaction was pyrolytic degradation which took place in water-deficient and oil-rich system at relatively high temperature.

  • PDF

The Investigation on Thermal Aging Characteristics of Oil-Paper Insulation in Bushing

  • Liao, Rui-jin;Hu, En-de;Yang, Li-jun;Xu, Zuo-ming
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1114-1123
    • /
    • 2015
  • Bushing is the key link to connect outer and inner insulating systems and also the essential electric accessory in electric power system, especially in the high voltage engineering (AC 1000kV, DC 800kV). This paper presented the experimental research of thermal aging characteristic of oil-paper insulation used in bushing. A thermally accelerated aging experiment at 90℃ was performed. The bushing models containing five layers of paper were sealed into the aging vessels and further aged for 250 days. Then several important parameters associated with the aging were observed and evaluated. The results showed that the degree of polymerization (DP) of papers gradually decreased. The DP values of outermost layer and middle layer fit well into the second-order kinematic model and first-order kinematic model, respectively. Less deterioration speed of the inter-layer paper than outer layer was confirmed by the variation of DP. Hydrolysis was considered as the main cause to this phenomenon. In addition, the logarithm of the furfural concentrations in insulation oil was found to have good linear relationship with DP of papers. Interestingly, when the aging time is about 250 days and DP is 419, the aging process reaches an inflection point at which the DP approaches the leveling off degree of polymerization (LODP) value. Both tanδ and acid number of oils increased, while surface and volume resistivity of papers decreased. The obtained results demonstrated that thermal aging and moisture absorbed in papers brought great influence to the degradation of insulating paper, leading to rapid decrease of DP and increase of the tanδ. Thus, the bushing should be avoided from damp and real-time monitoring to the variation of tanδ and DP values of paper is an effective way to evaluate the insulation status of bushing.

Discoloration Effects of LEDs on Painting Binder Materials (LED광원에 의한 회화 전색제의 변색 영향 연구)

  • Kim, Ji Won;Lee, Yu Jung;Kim, Kyu Lin;Lee, Hwa Soo;Kang, Dai Ill
    • Journal of Conservation Science
    • /
    • v.34 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • In order to understand the influence of light artifact discoloration, priority must be given to the reaction characteristics of the light the materials constituting the product. In this study, we focus on two representative medium, animal glue and linseed oil which constitute the colored layer of the painting relics. This study is based on an accelerated degradation test using two types of light emitting diods (LEDs) with different wavelength characteristics. In the experiments, discoloration appeared markedly in the animal glue and linseed oil under accelerated aging test conditions using Blue LED. Among the two types of LEDs, the degree of discoloration of the material was much higher with the Blue LED having the total radiation flux (mW). This indicates that the discoloration of painting artifacts such as animal glue and linseed oil is more significantly influenced by the total radiation flux (mW) of the light source than the total luminous flux (lm).

Biodesulfurization of Dibenzothiophene and Its Derivatives Using Resting and Immobilized Cells of Sphingomonas subarctica T7b

  • Gunam, Ida Bagus Wayan;Yamamura, Kenta;Sujaya, I. Nengah;Antara, Nyoman Semadi;Aryanta, Wayan Redi;Tanaka, Michiko;Tomita, Fusao;Sone, Teruo;Asano, Kozo
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.473-482
    • /
    • 2013
  • The desulfurization ability of Sphingomonas subarctica T7b was evaluated using resting and immobilized cells with dibenzothiophene (DBT), alkyl DBTs, and commercial light gas oil (LGO) as the substrates. The resting cells of S. subarctica T7b degraded 239.2 mg of the initial 250 mg of DBT/l (1.36 mM) within 24 h at $27^{\circ}C$, while 127.5 mg of 2-hydroxybiphenyl (2-HBP)/l (0.75 mM) was formed, representing a 55% conversion of the DBT. The DBT desulfurization activity was significantly affected by the aqueous-to-oil phase ratio. In addition, the resting cells of S. subarctica T7b were able to desulfurize alkyl DBTs with long alkyl chains, although the desulfurization rate decreased with an increase in the total carbon number of the alkylated DBTs. LGO with a total sulfur content of 280 mg/l was desulfurized to 152 mg/l after 24 h of reaction. Cells immobilized by entrapment with polyvinyl alcohol (PVA) exhibited a high DBT desulfurization activity, including repeated use for more than 8 batch cycles without loss of biodesulfurization activity. The stability of the immobilized cells was better than that of the resting cells at different initial pHs, higher temperatures, and for DBT biodesulfurization in successive degradation cycles. The immobilized cells were also easily separated from the oil and water phases, giving this method great potential for oil biodesulfurization.

Ginseng seed oil ameliorates hepatic lipid accumulation in vitro and in vivo

  • Kim, Go Woon;Jo, Hee Kyung;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.419-428
    • /
    • 2018
  • Background: Despite the large number of studies on ginseng, pharmacological activities of ginseng seed oil (GSO) have not been established. GSO is rich in unsaturated fatty acids, mostly oleic and linoleic acids. Unsaturated fatty acids are known to exert a therapeutic effect in nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effect and underlying mechanisms of GSO against NAFLD using in vitro and in vivo models. Methods: In vitro lipid accumulation was induced by free fatty acid mixture in HepG2 cells and by 3 wk of high fat diet (HFD)-feeding in Sprague-Dawley rats prior to hepatocyte isolation. The effects of GSO against diet-induced hepatic steatosis were further examined in C57BL/6J mice fed a HFD for 12 wk. Results: Oil Red O staining and intracellular triglyceride levels showed marked accumulation of lipid droplets in both HepG2 cells and rat hepatocytes, and these were attenuated by GSO treatment. In HFD-fed mice, GSO improved HFD-induced dyslipidemia and hepatic insulin resistance. Increased hepatic lipid contents were observed in HFD-fed mice and it was lowered in GSO (500 mg/kg)-treated mice by 26.4% which was evident in histological analysis. Pathway analysis of hepatic global gene expression indicated that GSO increased the expression of genes associated with ${\beta}$-oxidation (Ppara, Ppargc1a, Sirt1, and Cpt1a) and decreased the expression of lipogenic genes (Srebf1 and Mlxipl), and these were confirmed with reverse transcription and quantitative polymerase-chain reaction. Conclusion: These findings suggest that GSO has a beneficial effect on NAFLD through the suppression of lipogenesis and stimulation of fatty acid degradation pathway.