• Title/Summary/Keyword: oil yield

Search Result 763, Processing Time 0.041 seconds

Characterization of Heat Reformed Naphtha Cracking Bottom Oil Extracts

  • Oh, Jong-Hyun;Lee, Jae-Young;Kang, Seok-Hwan;Rhee, Tai-Hyung;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.9 no.4
    • /
    • pp.289-293
    • /
    • 2008
  • Naphtha Cracking Bottom (NCB) oil was heat reformed at various reforming temperature and time, and the volatile extracts were characterized including yields, molecular weight distributions, and representative compounds. The yield of extract increased as the increase of reforming temperature ($360{\sim}420^{\circ}C)$ and time (1~4 hr). Molecular weight of the as-received NCB oil was under 200, and those of extracts were distributed in the range of 100-250, and far smaller than those of precursor pitches of 380-550. Naphtalene-based compounds were more than 70% in the as-received NCB oil, and most of them were isomers of compounds bonding functional groups, such as methyl ($CH_{3^-}$) and ethyl ($C_2H_{5^-}$). When the as-received NCB oil was reformed at $360^{\circ}C$ for 1 hr, the most prominent compound was 1,2-Butadien, 3-phenyl- (24.57%), while naphthalene became main component again as increasing the reforming temperature.

Volatile Compounds of Pine Needle(Pinus rigida Miller) Extracts (소나무(Pinus rigida Miller) 잎 추출물의 휘발성 성분)

  • 홍원택;고경민;이재곤;장희진;곽재진
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.24 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • This study was conducted to evaluate whether pine needle extracts can be used as tobacco flavors. Yield of essential oil, absolute and oleoresin extracted from pine needles is 0.07%, 1.20% and 6.08% respectively. The volatile compounds isolated from the three types of extracts were analyzed by gas chromatography(GC) and mass selective detector(MSD). Total 72 components were identified in the three type of extracts including 26 hydrocarbons, 16 alcohols, 13 esters, 9 acids, 4 phenols, 2 aldehydes and 2 ketones compounds. The major components were $\beta$-pinene, $\beta$-caryophyllene, $\delta$-cadinene and 4,5-dimethyl-1,3 -dioxol-2-one. There were 49 volatile components in the absolute, 44 components in the essential oil and 26 components in the oleoresin. The content of hydrocarbons and alcohols was higher in the essential oil extracted by simultaneous distillation extraction(SDE) than in others, while that of esters and acids was higher in the absolute than in others. Especially, phenols and ketones were identified only in the oleoresin. The components such as $\beta$-pinene, bornyl acetate, $\alpha$-terpineol and oxygenated terpenes have characteristic piney and fresh green odor. The contents of these components was higher in the essential oil and the absolute than in the oleoresin. Therefor, the essential oil and the absolute are expected to be more useful than the oleoresin as tobacco flavor.

Whole-cell Biotransformation of Chlorella Oil Hydrolysates into Medium Chain Fatty Acids

  • Seo, Joo-Hyun;Min, Won-Ki;Lee, Jung-Hoo;Lee, Sun-Mee;Lee, Choul-Gyun;Park, Jin-Byung
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.44-52
    • /
    • 2018
  • A synthetic pathway, which consisted of fatty acid double bond hydratase, alcohol dehydrogenase, and Baeyer-Villiger monooxygenase, was applied to Chlorella oil to produce ester fatty acids, which can be hydrolyzed into medium chain fatty acids. Since linoleic acid is a major fatty acid constituent of Chlorella oil, a fatty acid double bond hydratase from Lactobacillus acidophilus NBRC13951, which is able to convert linoleic acid into 13-hydroxyoctadec-9-enoic acid, was used. Recombinant Escherichia coli expressing the fatty acid double bond hydratase from L. acidophilus NBRC13951 successfully transformed linoleic acid in Chlorella oil hydrolysates into 13-hydroxyoctadec-9-enoic acid with approximately 60% conversion yield. 13-Hydroxyoctadec-9-enoic acid was further converted into ester fatty acids by the recombinant E. coli expressing a long chain secondary alcohol dehydrogenase and a Baeyer-Villiger monooxygenase. The resulting ester fatty acids were then hydrolyzed into medium chain fatty acids by a lipase. Overall, industrially relevant medium chain fatty acids were produced from Chlorella oil hydrolysates. Thereby, this study may contribute to biosynthesis of medium chain fatty acids from microalgae oils as well as long chain fatty acids.

Effects of Temperature, Light Intensity and Soil Moisture on Growth, Yield and Essential Oil Content in Valerian(Valeriana fauriei var. dasycarpa Hara) (쥐오줌풀의 생육 및 수량과 정유성분에 미치는 온도, 광도, 토양수분의 영향)

  • Cho, Chang-Hwan;Lee, Jong-Chul;Choi, Young-Hyun;Han, Ouk-Kyu
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.1
    • /
    • pp.22-32
    • /
    • 1997
  • This experiment was conducted to obtain information for the cultivation of Korean valerian(Valeriana lauriei var. dasycarpa Hara) which will be useful for medicinal and aromatic resources. The effect of different temperature conditions, light intensities and soil water conditions on growth, yield and component of essential oil of V. fauriei were measured at the Dankook University, Cheonan, and a study on the shading treatment was at Umsung, Chungchongbukdo, and Jinbu, Kangwondo, in 1995. V. laudei was planted at five different temperature conditions, 10, 15, 20, 25 and 3$0^{\circ}C$, eight light intensity conditions, 1, 000, 2, 500, 5, 000, 20, 000, 30, 000, 40, 000, 50, 000 and 60, 000lux, six soil water contents, 30, 45, 55, 70, 80 and 90% of the saturated soil, during growth stage. Shading treatment was three conditions, 0, 25 and 50%, during the daytime in field conditions. Photosynthesis had a highly significant relationship with temperature conditions in a quadratic regression model, from which the temperature for the plant growth was estimated to be 17.7$^{\circ}C$. A highly significant quadratic regression was noted between temperature and leaf width or root weight of V. fauriei. It was estimated from the regression equation that the optimum temperature for root growth was 20.3$^{\circ}C$. The content of essential oil and extract rate of root was the highest in the 15~2$0^{\circ}C$. Photosynthesis also was significantly affected by light intensity in a quadratic regression model, from which the optimum light intensity for the growth was estimated to be 40, 000lux. Root yield was more produced in Jinbu than that of in Umsung. The root yield was increased by the shading treatment in Umsung, whereas it was decreased by the shading treatment in Jinbu. The content of essential oil was not affected by the shading treatment of plants during the cultivation, while the compositions of components of essential oil were related to the growing locations. As soil water content was higher, the growth and content of root extract were increased. The optimum soil moisture for the growth of V. fauriei was 80~90% of the saturated soil. In summary, the results indicated that the growth, yield and component of essential oil in V. fauriei were affected by environmental factors as well as soil moisture.

  • PDF

Scaling analysis of electrorheological poly(naphthalene quinone) radical suspensions

  • Min S. Cho;Park, Hyoung J.
    • Korea-Australia Rheology Journal
    • /
    • v.12 no.3_4
    • /
    • pp.151-155
    • /
    • 2000
  • A semiconducting poly(naphthalene quinone) radical (PNQR) was synthesized from Friedel-Craft acylation between naphthalene and phthalic anhydride and used as dispersing particles of a dry-base electrorheological (ER) material in silicone oil. Under an applied electric field (E), the dynamic yield stress (${\tau}_{dyn}$) of this ER fluid, obtained from a steady shear experiment with a controlled shear rate mode, was observed to increase with $E^{1.45}$ Based on this relationship, we propose a universal correlation curve for shear viscosity, which is independent of E using a scaling analysis.

  • PDF

Production of Phytoncide from Korean Pine Cone Waste by Steam Distillation (잣송이 부산물로부터 수증기 증류법에 의한 피톤치드의 추출)

  • Kim, Bae yong;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.648-658
    • /
    • 2015
  • Extraction of phytoncide oil from korea pine cone waste without damaging the pine cone tree itself was investigated using a steam distillation method. Also various components in the extracted phytoncide oil were separated using a column chromatography method. The extraction of phytoncide oil was effectively proceeded, and the maximum production yield of phytoncide oil could be obtained under $100^{\circ}C$ of distillation temperature and within 30 minute of distillation time. According to chemical analysis, it was found that the phytoncide oil from korea pine cone waste was consisted of more than 12 components such as ${\alpha}$-pinene, ${\beta}$-pinene, D-limonene, as main components. In addition, the aqueous hydrogel containing other components such as verbenone, ${\alpha}$-terpinieol, fenchol, different from components of phytoncide oil itself could be obtained through the steam distillation.

Utilization of Polyunsaturated Lipids in Red Muscled Fishes 4. Addition of Refined Sardine Oil to Edible Oils and Storage Stability of Polyunsaturated Fatty Acids (적색육어류의 고도불포화지질의 이용에 관한 연구 4. 정제정어리유의 식용유중의 첨가 및 저장중의 고도불포화지방산의 안정성)

  • LEE Kang-Ho;JEONG In-Hak;SUH Jae-Soo;JUNG Woo-Jin;YOU Byeong Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.4
    • /
    • pp.232-238
    • /
    • 1988
  • As a part of the studies on effective utilization of polyunsaturated lipids in sardine (Sardinops melanosticta), when the refined sardine oil was mixed with soybean and other vegetable oils storage stability and the effect to the quality of the product was investigated. Addition of 1 volume of refined sardine oil to 4 volumes of soybean oil was recommended to yield 3 in P/S ratio and 1.5g of eicosapentaenoic and docosahexaenoic acid per 40g of the mixed oil for a good storage stability and as a dietary source of EPA requirement for atherosclerotic disease. When the unpurified vegetable oils, sesame oil and perilla oil, were mixed with the same volume of refined sardine oil the content of n-3 fatty acids was increased to $13.36\%\;and\;30.65\%\;%\;from\;0.27\%$ in sesame oil and $29.72\%$ in perilla oil. The n-3/n-6 ratios were also raised to 0.476 and 1.433 from 0.006 and 0.876. And these mixed oils were more stabilized than the refined sardine oil during storage at $30^{\circ}C$.

  • PDF

Hydrodeoxygenation of Spent Coffee Bio-oil from Fast Pyrolysis using HZSM-5 and Dolomite Catalysts

  • Park, Jeong Woo;Ly, Hoang Vu;Linh, Le Manh;Tran, Quoc Khanh;Kim, Seung-Soo;Kim, Jinsoo
    • Clean Technology
    • /
    • v.25 no.2
    • /
    • pp.168-176
    • /
    • 2019
  • Spent coffee is one of biomass sources to be converted into bio-oil. However, the bio-oil should be further upgraded to achieve a higher quality bio-oil because of its high oxygen content. Deoxygenation under hydrotreating using different catalysts (catalytic hydrodeoxygenation; HDO) is considered as one of the promising methods for upgrading bio-oil from pyrolysis by removal of O-containing groups. In this study, the HDO of spent coffee bio-oil, which was collected from fast pyrolysis of spent coffee ($460^{\circ}C$, $2.0{\times}U_{mf}$), was carried out in an autoclave. The product yields were 72.16 ~ 96.76 wt% of bio-oil, 0 ~ 18.59 wt% of char, and 3.24 ~ 9.25 wt% of gas obtained in 30 min at temperatures between $250^{\circ}C$ and $350^{\circ}C$ and pressure in the range of 3 to 9 bar. The highest yield of bio-oil of 97.13% was achieved at $250^{\circ}C$ and 3 bar, with high selectivity of D-Allose. The carbon number distribution of the bio-oil was analyzed based on the concept of simulated distillation. The $C_{12}{\sim}C_{14}$ fraction increased from 22.98 wt% to 27.30 wt%, whereas the $C_{19}{\sim}C_{26}$ fraction decreased from 24.74 wt% to 17.18 wt% with increasing reaction time. Bio-oil yields were slightly decreased when the HZSM-5 catalyst and dolomite were used. The selectivity of CO was increased at the HZSM-5 catalyst and decreased at the dolomite.

Effect of Different Zeolite Supported Bifunctional Catalysts for Hydrodeoxygenation of Waste Wood Bio-oil

  • Oh, Shinyoung;Ahn, Sye-Hee;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.344-359
    • /
    • 2019
  • Effects of various types of zeolite on the catalytic performance of hydrodeoxygenation (HDO) of bio-oil obtained from waste larch wood pyrolysis were investigated herein. Bifunctional catalysts were prepared via wet impregnation. The catalysts were characterized through XRD, BET, and SEM. Experimental results demonstrated that HDO enhanced the fuel properties of waste wood bio-oil, such as higher heating values (HHV) (20.4-28.3 MJ/kg) than bio-oil (13.7 MJ/kg). Water content (from 19.3 in bio-oil to 3.1-16.6 wt% in heavy oils), the total acid number (from 150 in bio-oil to 28-77 mg KOH/g oil in heavy oils), and viscosity (from 103 in bio-oil to $40-69mm^2/s$ in heavy oils) also improved post HDO. In our experiments, depending on the zeolite support, NiFe/HBeta exhibited a high Si/Al ratio of 38 with a high specific surface area ($545.1m^2/g$), and, based on the yield of heavy oil (18.3-18.9 wt%) and HHV (22.4-25.2 MJ/kg), its performance was not significantly affected by temperature and solvent concentration variations. In contrast, NiFe/zeolite Y, which had a low Si/Al ratio of 5.2, exhibited the highest improved quality for heavy oil at high temperature, with an HHV of 28.3 MJ/kg at $350^{\circ}C$ with 25 wt% of solvent.

Oil Extraction from Nannochloropsis oceanica Cultured in an Open Raceway Pond and Biodiesel Conversion Using SO42-/HZSM-5 (Open raceway pond에서 배양된 Nannochloropsis oceanica로부터 오일 추출 및 SO42-/HZSM-5를 이용한 바이오디젤 전환)

  • Ji-Yeon Park;Joo Chang Park;Min-Cheol Kim;Deog-Keun Kim;Hyung-Taek Kim;Hoseob Chang;Jun Cheng;Weijuan Yang
    • New & Renewable Energy
    • /
    • v.19 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, microalgal oil was extracted from Nannochloropsis oceanica cultured in an open raceway pond and converted into biodiesel using a solid acid catalyst. Microalgal oil was extracted from two types of microalgae with and without nitrogen starvation using the KOH-solvent extraction method and the fatty acid content and oil extraction yield from each microalgae were compared. The fatty acid content of N. oceanica was 184.8 mg/g cell under basic conditions, and the oil content increased to 340.1 mg/g under nitrogen starvation conditions. Oil extraction yields were 90.8 and 95.4% in the first extraction, and increased to 97.5 and 98.8% after the second extraction. Microalgal oil extracted by KOH-solvent extraction was yellow in color and had reduced viscosity due to chlorophyll removal. In biodiesel conversion using the catalyst SO42-/HZSM-5, solvent-extracted oil showed a FAME content of 4.8%, while KOH-solvent-extracted oil showed a FAME content of 90.4%. Solid acid catalyst application has been made easier by removal of chlorophyll from microalgal oil. The FAME content increased to 96.6% upon distillation, and the oxidation stability increased to 11.07 h with addition of rapeseed biodiesel and 1,000 ppm butylated hydroxyanisole.