• Title/Summary/Keyword: oil tankers

Search Result 101, Processing Time 0.026 seconds

Effect of corrosion on the ultimate strength of double hull oil tankers - Part I: stiffened panels

  • Kim, Do Kyun;Park, Dae Kyeom;Kim, Jeong Hwan;Kim, Sang Jin;Kim, Bong Ju;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.507-530
    • /
    • 2012
  • Age-related problems especially corrosion and fatigue are normally suffered by weatherworn ships and aging offshore structures. The effect of corrosion is one of the important factors in the Common Structural Rule (CSR) guideline of the ship design based on a 20 or 25 years design life. The aim of this research is the clarification of the corrosion effect on ultimate strength of stiffened panels on various types of double hull oil tankers. In the case of ships, corrosion is a phenomenon caused by the ambient environment and it has different characteristics depending on the parts involved. Extensive research considering these characteristic have already done by previous researchers. Based on this data, the ultimate strength behavior of stiffened panels for four double hull oil tankers such as VLCC, Suezmax, Aframax, and Panamax classes are compared and analyzed. By considering hogging and sagging bending moments, the stiffened panels of the deck, inner bottom and outer bottom located far away from neutral axis of ship are assessed. The results of this paper will be useful in evaluating the ultimate strength of an oil tanker subjected to corrosion. These results will be an informative example to check the effect of ultimate strength of a stiffened panel according to corrosion addition from CSR for a given type of ship.

Comparative Studies on the Structural Design of Double Hull Tanker and Mid-deck Tanker (이중 선각 유조선과 중간 갑판 유조선의 구조설계 비교 연구)

  • Seung-Soo Na;Jae-Seon Yum
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.2
    • /
    • pp.100-108
    • /
    • 2000
  • As U.S. congress and I.M.O. have recently adopted strengthened MARPOL73/78 regulations on marine pollution, it is necessary to develope a new type of tankers such as Double hull tanker(D/H Tanker) and Mid-deck tanker(M/D Tanker) and so on. Because most of researches are concentrated on the volume of oil spill due to collision of ships, in this paper, a structural design program for D/H Tankers and M/D Tankers is developed to suggest the effective type of tankers by comparing structural characteristics between their types. By this program, minimum hull weight designs of D/H tankers and M/D tankers considering tank arrangement are performed and the design results are compared each other. The efficient types of hull structure for the minimum weight design between D/H tankers and M/D tankers is proposed.

  • PDF

Overview of Major Oil Spill at Sea and Details of Various Response Actions 2. Analysis of Marine Oil Pollution Incidents in Korea (대형 기름유출사고와 방제조치에 관한 연구 2. 국내 해양 기름오염사고 분석)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.5
    • /
    • pp.467-475
    • /
    • 2013
  • In order to seize quantitative materials as part of studies on measures for oil pollution prevention and control, the statistics of oil pollution incidents in Korean coastal waters for 10 years from 2003 to 2012 were analyzed with relation to the number of oil spills and the volume of oil spilt according to causes, sources and sea areas of spills. Total number and total volume of oil spills for 10 years were found to be 2,833 cases and 17,877 kL, respectively. 50.4 %(1,429 cases) of total number of oil spills were caused by negligence, although oil spillage due to negligence was 294 kL(1.7 %). While oil spillage caused by marine accidents was 17,400 kL(97.3 %), marine accidents accounted for 27.9 %(790 cases) of total number of oil spills. While negligence had a great influence on the number of oil spills, marine accidents had a huge impact on the amount of oil spilt. Fishing boats accounted for 42.7 %(1,210 cases) of the number of oil spills, and although oil tankers accounted for 9.2 %(261 cases) of the number of oil spills, oil spillage from oil tankers was 15,488kL(86.7 %). It means that oil tankers such as VLCC or ULCC may be the main sources of major oil spills and a few very large spills are responsible for a high percentage of the amount of oil spilt. While the number of oil spill incidents was closely related to the accidents of fishing boats, the volume of oil spilt was greatly affected by the major oil spill incidents of oil tankers such as M/T Hebei Spirit. The number and volume of oil spills were shown to be 1,613 cases(56.9 %) and 3,804 kL(21.3 %) in South Sea, 700 cases(24.7 %) and 13,501 kL(75.5 %) in West Sea, and 520 cases(18.2 %) and 572 kL(3.2 %) in East Sea of Korea, respectively. The highest number of oil spills was found in South Sea and the most volume of oil spilt was shown in West Sea of Korea for 10 years.

Effect of corrosion on the ultimate strength of double hull oil tankers - Part II: hull girders

  • Kim, Do Kyun;Park, Dae Kyeom;Park, Dong Hee;Kim, Han Byul;Kim, Bong Ju;Seo, Jung Kwan;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.42 no.4
    • /
    • pp.531-549
    • /
    • 2012
  • Numerous oil tanker losses have been reported and one of the possible causes of such casualties is caused by the structural failure of aging ship hulls in rough weather. In aging ships, corrosion and fatigue cracks are the two most important factors affecting structural safety and integrity. This research is about effect on hull girder ultimate strength behavior of double hull oil tanker according to corrosion after Part I: stiffened panel. Based on corrosion data of Part I (time-dependent corrosion wastage model and CSR corrosion model), when progressing corrosion of fourtypes of double hull oil tankers (VLCC, Suezmax, Aframax, and Panamax), the ultimate strength behavior of hull girder is compared and analyzed. In case of the ultimate strength behavior of hull girder, when occurring corrosion, the result under vertical and horizontal bending moment is analyzed. The effect of time-dependent corrosion wastage on the ultimate hull girder strength as well as the area, section modulus, and moment of inertia are also studied. The result of this research will be useful data to evaluate ultimate hull girder strength of corroded double hull oil tanker.

Structural Safety Evaluation for 75,000 TDW Chemical Tanker Applied Common Structural Rules (CSR을 적용한 75,000 TDW 화학제품 운반선의 구조 안전성 평가)

  • Sim, Ye-Eun;Haa, Chung-In;Nam Gung, Mun;Kim, Gi-Jae;Lee, Kyung-Seok;Kim, Man-Soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2013.12a
    • /
    • pp.1-7
    • /
    • 2013
  • In past decades, a maximum standard vessel size for chemical tankers is not normally larger than 55,000 TDW due to the characteristic of chemical product shipment which is so variable but small quantity unlike single product carries such as crude oil tankers. These days, as demand of very large chemical tanker is rising due to the change of market trend of chemical product shipment, 75,000 TDW class chemical tanker has been developed. The newly developed vessel's structure has been designed based on CSR (Common Structural Rule) for double hull oil tankers (hereafter CSR) published by IACS (International Association of Classification Societies). However, due to the large difference from typical oil tankers, many items should be specially considered such as on deck transverse and corrugated bulkheads. In addition, two longitudinal bulkheads without upper stool have been constructed in order to maximise the number of cargo tanks and the volume of each cargo tanks. In this study, key word of the vessel has been briefly reviewed and the structural reliability of the proposed vessel has been investigated.

  • PDF

Ultimate strength performance of tankers associated with industry corrosion addition practices

  • Kim, Do Kyun;Kim, Han Byul;Zhang, Xiaoming;Li, Chen Guang;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.507-528
    • /
    • 2014
  • In the ship and offshore structure design, age-related problems such as corrosion damage, local denting, and fatigue damage are important factors to be considered in building a reliable structure as they have a significant influence on the residual structural capacity. In shipping, corrosion addition methods are widely adopted in structural design to prevent structural capacity degradation. The present study focuses on the historical trend of corrosion addition rules for ship structural design and investigates their effects on the ultimate strength performance such as hull girder and stiffened panel of double hull oil tankers. Three types of rules based on corrosion addition models, namely historic corrosion rules (pre-CSR), Common Structural Rules (CSR), and harmonised Common Structural Rules (CSR-H) are considered and compared with two other corrosion models namely UGS model, suggested by the Union of Greek Shipowners (UGS), and Time-Dependent Corrosion Wastage Model (TDCWM). To identify the general trend in the effects of corrosion damage on the ultimate longitudinal strength performance, the corrosion addition rules are applied to four representative sizes of double hull oil tankers namely Panamax, Aframax, Suezmax, and VLCC. The results are helpful in understanding the trend of corrosion additions for tanker structures.

Development of Simplified Collision and Grounding Strength Assessment System of Oil Tankers (유조선의 간이 충돌/좌초강도 평가시스템 개발)

  • Lee T.K.;Kim J.D.;Chun T.B.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.2
    • /
    • pp.86-94
    • /
    • 1999
  • This paper describes a development of Collision/grounding Strength Assessment System (COSAS) using simplified method. This method is formulated in closed-form equation by taking into account crushing caused by bulbous bow collision and cutting caused by forward speed grounding. To verify the accuracy of the developed system, some examples for test models of double side/bottom structure in collision/grounding situation are considered. This system might be useful for analysis of structural damage of oil tankers in collision/grounding.

  • PDF

Hull Structural Design of A 300,000 DWT Double Hull VLCC

  • Bong, Hyon-Soo;Yoo, In-Sang;Oh, Yeong-Tae
    • Journal of Hydrospace Technology
    • /
    • v.1 no.1
    • /
    • pp.89-110
    • /
    • 1995
  • The enactment of OPA90 (Oil Pollution Act of 1990) in the USA and the consequent moves by IMO(International Maritime Organization) to introduce new Regulations for the design of oil tankers led the oil transportation industry to undergo a period of big change. This resulted in the introduction of double hull tankers. This paper introduces the design for the 300, 000 DWT double hull VLCC of World-Wide Shipping Agency Pte Ltd. in Hong Kong, which is the first of this type constructed by Daewoo Shipbuilding & Heavy Machinery Ltd.(DSHM). The characteristics of the compartment and structural arrangement of this vessel are briefly described, and the scope of structural analysis is illustrated. In addition, the merits/demerits of different crosstie arrangements are described in the appendices.

  • PDF

A Study on Double Bottom Structural Criterion of Oil Tanker under DWT 500 (재화중량 500톤 미만 유조선의 이중저구조기준 연구)

  • Lee, Sang-Gab;Yoon, Yeo-Hoon;Bae, Jun-Yong
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.23
    • /
    • pp.2-13
    • /
    • 2007
  • With the effectuation of the amendment of MARPOL 73/78 on 5 April 2005, enforcement regulations of Marine Pollution Prevention Act were revised in domestic on 12 March 2005 that double hull structure was required to the small single bottom oil tankers under DWT(deadweight tonnage) 500 ton for the protection of the marine pollution casualties. The objective of this study is to develop the double bottom structure of small oil tanker under DWT 500 ton with superior crashworthiness and to establish its suitable standard to double bottom structure. The promoting strategy of this R&D is classified into the crashworthy structural analysis of small oil tankers using LS/DYNA3D code and the examination of their damage stabilities according to tonnage. It could be thought that the desirable inner bottom height should be above the B/7.5 and its minimum height 0.65m for the domestic small oil tanker under DWT 500ton.

  • PDF

Comparison of residual strength-grounding damage index diagrams for tankers produced by the ALPS/HULL ISFEM and design formula method

  • Kim, Do Kyun;Kim, Han Byul;Mohd, Mohd Hairil;Paik, Jeom Kee
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.1
    • /
    • pp.47-61
    • /
    • 2013
  • This study compares the Residual ultimate longitudinal strength - grounding Damage index (R-D) diagrams produced by two analysis methods: the ALPS/HULL Intelligent Supersize Finite Element Method (ISFEM) and the design formula (modified Paik and Mansour) method - used to assess the safety of damaged ships. The comparison includes four types of double-hull oil tankers: Panamax, Aframax, Suezmax and VLCC. The R-D diagrams were calculated for a series of 50 grounding scenarios. The diagrams were efficiently sampled using the Latin Hypercube Sampling (LHS) technique and comprehensively analysed based on ship size. Finally, the two methods were compared by statistically analysing the differences between their grounding damage indices and ultimate longitudinal strength predictions. The findings provide a useful example of how to apply the ultimate longitudinal strength analysis method to grounded ships.