• 제목/요약/키워드: oil mist lubrication

검색결과 22건 처리시간 0.025초

고속주축용 라비린스 시일의 형상설계에 관한 연구 (A study on Geometry of Labyrinth Seal for High Speed Machining Center)

  • 나병철;전경진;한동철
    • Tribology and Lubricants
    • /
    • 제13권3호
    • /
    • pp.56-62
    • /
    • 1997
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. High speed spindles require non-contact type sealing mechanism. In this study, an optimum seal design to minimize leakage is concerned in the aspect of flow control. This paper categorizes geometries of mostly used non-contact type seals and analyzes each leakage characteristics to minimize a leakage on sealing area. Effect of minimum clearance and its position are considered according to variation of detail geometry. The estimation of non-leaking property is determined by amount of pressure drop in the leakage path assuming constant leakage flow. To simulate an oil jet or oil mist type high speed spindle lubrication, the working fluid is regarded as two phases that are mixed flow of oil phase and air phase. Both of the turbulence and the compressible flow model were introduced in CFD(Computational Fluid Dynamics) analysis. Design parameters has been induced to minimize leakage in limited space, and a methodological study on geometrical optimization has been conducted.

고속주축용 비접촉 시일의 형상설계 연구 (Design Characteristics of Non-Contact Type Seal for High Speed Spindle)

  • 나병철;전경진;한동철
    • 한국정밀공학회지
    • /
    • 제14권4호
    • /
    • pp.56-63
    • /
    • 1997
  • Sealing of lubricant-air mixture in the high performance machining center is one of most the important characteristics to carry out enhanced lubrication. High speed spindle requires non-contact type of sealing mechanism. Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Effect of geometry and leakage path are evaluated according to variation of sealing geometry. Velocity, pressure, turbulence intensity of profile is calculated to find more efficient geometry and variables. This offers a methodological way of enhancement seal design for high speed spindle. The working fluid is regarded as two phases that are mixed flow of oil phase and air phase. It is more reasonable to simulate an oil jet or oil mist type high speed spindle lubrication. Turbulence and compressible flow model are used to evaluate a flow characteristic. This paper considers a design effect of sealing capability of non- contact type seals for high speed spindle and analyzes leakage characteristics to minimize a leakage 7 on the same sealing area.

  • PDF

비접촉 시일의 형상에 관한 누설특성 해석

  • 나병철;전경진;한동철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제25회 춘계학술대회
    • /
    • pp.176-180
    • /
    • 1997
  • Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Flow is characterized into five categories according to its leakage path. Effect of geometry and leakage path are evaluated according to variation of sealing geometry. To simulate an oil jet or oil mist type high speed spindle lubrication, the working fluid is regarded as two phases that are mixed flow of oil phase and air phase. Both of the turbulence and the compressible flow model were introduced in CFD(Computational Fluid Dynamics) analysis. This offers a methodological way of enhancement seal design for high speed spindle.

  • PDF

오일 미스트 윤활환경의 밀봉성능향상을 위한 실험적 연구 (An Experimental Study on Sealing Performance Improvement for Oil Mist Luibrication Environment)

  • 나병철;전경진;한동철
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.76-82
    • /
    • 1998
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. Current work is emphasized on the investigation of the air jet effect on the protective collar type labyrinth seal. To improve the sealing capability of conventional labyrinth seal, air jet is injected against through the leakage flow. It has a combined geometry of a protective collar type and an air jet type. In this study, both of a numerical analysis by CFD(Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement. Both of the turbulence and the compressible flow model are introduced in CFD analysis. The sealing effect of the leakage clearance and the air jet magnitude are studied for various parameter in the experiment. The results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effects of sealing improvement are explained as decreasing of effective leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger.

  • PDF

형상설계에 관한 고속주축용 비접촉 시일의 밀봉특성 연구 (Design Effect of Sealing Characteristics of Non-Contact Type Seal for High Speed Spindle)

  • 나병철;전경진;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.610-614
    • /
    • 1996
  • Sealing of lubricat-air mixture in the high performance machining conte is one of most the important characteristics to carry out enhanced lubrication. High speed spindle requires non-contact type of sealing mechanism. Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Effect of geometry and leakage path are evaluated according to variation of sealing geometry, Velocity, pressure, turbulence intensity of profile is calculated to fina more efficient geometry and variables. This offers a methodological way of enhancement seal design for high speed spindle. The working fluid is regarded as two phases that are mixed flow of oil phase and air phase. It is more reasonable to simulate an oil jet or oil mist type high speed spindle lubrication. Turbulence and compressible flow model are used to evaluate a flow characteristic, This paper arranges a geometry of mostly used non-contact type seal and analyzes leakage characteristics to minimize a leakage on the same sealing area.

  • PDF

대체냉각 기술을 이용한 환경친화 연삭가공 기술 (A Study on the Grinding Characteristics According to Cooling Methods)

  • 이석우;최헌종;허남환;이종항
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.962-967
    • /
    • 2003
  • Recently, environmental pollution has become a serious problem in industry, and many researches have been done in order to preserve the environment. The coolant, which promotes lubrication, cooling and penetration, contains chlorine, sulfur and phosphorus to improve the machining efficiency. These additives, which move around into the air during machining, pollute working. Therefore, many researches on how to reduce the amount of coolant during machining have been carried out. However, to reduce even small amount of coolant causes high temperature of a workpiece and it brings thermal defects. In this study, the experiments of wet & dry grinding using cooling methods (using coolant only, mist and compressed cold air only) are performed to solve the problem of environmental contamination and to get a better surface integrity of a workpiece by comparing surface roughness, roundness and residual stress.

  • PDF

고속 엔드밀가공에서 가공환경 변화에 따른 가공면의 미시적 정밀도에 관한 연구 (A Study on the Microscopic Precision of Machined Surface according to Variation of Machining Environments in High Speed Endmilling)

  • 권동희;이종환;황인옥;강명창;김정석
    • 한국공작기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.50-57
    • /
    • 2006
  • The investigation of microscopic precision in high speed endmilling is necessary for machinability evaluation, and the environmentally conscious machining technology have more important position in recent machining process. The microscopic precision of workpiece is influenced by machining environments variation as cutting fluid type and lubricant method. In this study, the cutting forces according to variation of cooling and lubrication are investigated by specially designed tool dynamometer. And the surface roughness, micro hardness and residual stress are evaluated according to machining environment. The characteristics of damaged layer in environmentally conscious machining and conventional machining using cutting fluid are compared experimentally.

냉각.윤활방식 변화에 따른 가공면의 미시적 정밀도 평가 (Microscopic precision evaluation of machined surface according to the variation of cooling and lubrication method)

  • 황인옥;권동희;강명창;김정석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.225-226
    • /
    • 2006
  • As the technique of high-speed end-milling is widely adopted to machining field. The investigation for microscopic precision of workpiece is necessary for machinability evolution. The environmental pollution has become a big problem in industry and many researcher have investigated in order to preserve the environment. The environmentally conscious machining and technology have more important position in machining process. In the milling process, the cutting fluid has greatly bad influence on the environment. The damaged layer affect mold life and machine parts in machining. In this study, the cutting force, the surface roughness, micro hardness and residual stress is evaluated according to machining environment. Finally, it is obtained that the characteristics of damaged layer in environmentally conscious machining is better than that in conventional machining using cutting fluid.

  • PDF

예압과 냉각조건에 따른 고주파 모터 내장형 주축계의 열특성 (Thermal Characteristics of the High Frequency Motor Spindle according to the Bearing Preloads and Cooling Conditions)

  • 최대봉;김수태;정성훈;김진한;김용기
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.138-143
    • /
    • 2005
  • The important problem in the high speed spindles is to reduce and minimize the thermal effect by the motor and ball bearings. Thermal characteristics according to the bearing preload and hollow shaft cooling are studied for the spindle with the oil mist lubrication and high frequency motor. Temperature distribution and thermal deformation according to the spindle speed, preload and flow rate are measured by thermocouple and gap sensor. Temperature distribution and thermal deformation are analyzed by using the finite element method. The results of analysis are compared with the measured data. This paper show that the suitable preload and hollow shaft cooling are very effective to minimize the thermal effect by the motor and ball bearings. This study indicates that temperature distribution and thermal deformation of the high speed spindle system can be estimated reasonably by using the three dimensional model through the finite element method and supports thermal optimization and more effective cooling method.

  • PDF