• Title/Summary/Keyword: oil flow quantity

Search Result 31, Processing Time 0.024 seconds

Estimation of Oil Quantity in Porous Bearing

  • kohno, Hajime
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.594-595
    • /
    • 2006
  • Porous bearings are lubricated the oil that is contained in porous metal. Then they are always used with no oil supply, because of that, widely used electric motors. But, if oil flow out less than the limit, troubles often happen. This report shows that attempt of estimating oil quantity in porous bearing by using calculation that based Reynols' equation and Darcy's law, aimed of developing long life bearing. And comparing with experimental and calculation result, we show possibility of estimating rest oil quantity in porous bearing at steadry state by calculation.

  • PDF

Characteristics Analysis of 2-pin Sensor Composited Fuel Heater using the Low Temperature Fluidity (저온유동성시험기를 이용한 2-핀용 센서통합연료히터의 특성연구)

  • Xiang, Zhao;Yoon, Dal-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1230-1235
    • /
    • 2019
  • In this paper, we have developed sensor composited heater of 2-pin, and unified the fuel filter. In order to evaluate the performance of the 2-pin sensor composited fuel heater, we have make of the low temperature fluidity system. The one measure and analysis the electrical and oil flow quantity characteristics at an input and out port of 2-pin sensor composited fuel heater. Especially, in the characteristics verification elements of the proposed goods, we use the test chamber for the temperature variable and oil flow quantity test, and designed an embedded system for interfacing an engine. By interfacing both user and the system, it support an experimental and date gathering function in 2-pin sensor composited fuel filter. And then test the temperature, oil pressure, electrical characteristics and oil flow quantity in variable status from - 30 ℃ to + 80 ℃. These can help us to determine the quality and performance of elementary goods.

Intercomparison of Light Oil Flow Standard System for the Reliability of Measurement Accuracy (경질유 유량표준장치의 신뢰도 검증을 위한 측정정확도 비교)

  • Lim, Ki-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.712-719
    • /
    • 2008
  • Light Oil Flow Standard System(LOFSS), as a national oil flow standard system, in Korea Research Institute of Standards and Science(KRISS) was developed for oil flowmeter calibration, and the expanded uncertainty of flow quantity determination was estimated within 0.04 %. In order to improve the reliability of the LOFSS measurement, a proficiency test was carried out in the flow range of 20 and $240\;m^3/h$ (Reynolds number $20,000{\sim}900,000$). A turbine flowmeter was used as a transfer package in round robin test. The water flow standard system of KRISS, the pipe prover of the national calibration and test organization and the master meter calibrator of the turbine flowmeter supplier, which used the different working fluid respectively, were compared with the turbine flowmeter measurement. The maximum difference of measurement was 0.15 % between the LOFSS and the pipe prover. The En numbers of the each system measurement were evaluated at the same Reynolds number. It was found that the En numbers were less than 1 in the comparison, which means the procedures of the uncertainty estimation of the each calibrators were reasonable and reliable.

Flow Range Extension of Light Oil Flowmeter Standard System with Build-Up Technique (Build-Up 기법을 이용한 경질유 표준장치의 측정범위 확장)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1139-1146
    • /
    • 2006
  • Light Oil Flow Standard System(LOFSS) in Korea Research Institute of Standards and Science(KRISS) was designed for oil flowmeter calibration. In order to extend the flow range from 120 $m^3/h$ to 200 $m^3/h$, the build-up technique was applied with two positive displacement flowmeters as master flowmeter. The master flowmeters were calibrated against with LOFSS, which has 0.04 % uncertainty of flow quantity determination, then the test flowmeter is calibrated against two master flowmeters. For uncertainty analysis, the repeatability of master flowmeters, the variation of the fluid density and the pipe volume due to temperature change were scrutinized. The contribution of each uncertainty factors to the calibrator and the correlation of each factors were discussed. For investigating the feasibility of uncertainty analysis, a turbine flowmeter as a transfer package was tested with LOFSS and two reference flowmeter. The hypothesis test for both results was coincide with a 95 % significant level. This means that the uncertainty analysis procedure of the calibrator is reasonable and the extension of flow range with master meters was carry out successfully.

A Study on the Development and the Uncertainty Analysis of Oil Flow Standard System (기름 유량표준장치의 개발 및 측정 불확도에 관한 연구)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1071-1080
    • /
    • 2003
  • A national standard system was developed in order to calibrate and test the oil flowmeters for the petroleum field. A stop valve and a gyroscopic weighing scale were employed for the primary standard of the flow quantity. It is operated by the standing start and finish mode and the static weighing method. The model equation for uncertainty evaluation was based on the calibration principle of standard system. The sources of the uncertainties were quantified and combined according to the GUM(Guide to the Expression of Uncertainty in Measurement). It was found that the standard system had the relative expanded uncertainty of 0.04 % in the range of 18 - 350 ㎥/h. According to the uncertainty budget, the uncertainties of the fluid density and the volume of pipeline, which were temperature dependent, contributed 92% of final uncertainty in the oil flow standard system.

Prediction of Oil Lifetime due to Overheating of Oil and Bearing Housing in a Pump (펌프 베어링하우징에서 베어링과 오일의 과열 및 오일수명 예측)

  • 한상규;강병하;이봉주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.408-413
    • /
    • 2004
  • An experimental study has been carried out to investigate overheating of oil and bearing housing during pump operation. This problem is of particular interest in the pre diction of lifetime and failure of pump. Transient variation of oil temperature as well as bearing housing temperature is measured to study the effect of oil viscosity, oil amount, and discharge flow rate of pump. It is found that optimal oil quantity as well as proper viscosity of oil is required to keep the safe temperature level of oil and bearing housing in a pump. The oil temperature at steady state is almost not affected by discharge flow rate in the range of discharge flow rates considered in the present study.

Long Term Stability of Uncertainty Analysis of Light Oil Elow Standard System (장기 안정성을 고려한 경질유 유량표준장치 불확도 평가)

  • Lim, Ki-Won;Choi, Jong-Oh
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1130-1138
    • /
    • 2005
  • A national standard system for the petroleum field has been developed to calibrate and test the oil flow meters in Korea. The operating system and the uncertainty of the system were evaluated by the peer reviewers of foreign national metrology institutes in 2002. Since the characteristics of the system might be changed by time, the uncertainty of the system is reevaluated with the consideration of the long term stability of the system. It is found that the system has a relative expanded uncertainty of 0.048 $\%$ in the range of $15\~120\;m^3/h$. According to the uncertainty budget, the uncertainties of the fluid density and the final mass measurement, which are temperature dependent, contribute about $94\%$ of the total uncertainty in the oil flow standard system

Analysis of Ring Pack Lubrication

  • Lee, Jae-Seon;Han, Dong-Chul
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.928-934
    • /
    • 2000
  • This paper describes a method developed for the simulation of ring pack lubrication characteristic in an internal combustion engine. In general, the quantity of oil supply for piston ring lubrication may be insufficient in filling the entire volume formed at the interference between the piston ring and the cylinder liner. Thus the oil starvation condition should be considered in analyzing piston ring lubrication. In order to reasonably estimate the amount of oil left over on the cylinder liner, the flow rate at the posterior portion of the interface should be calculated with an adequate boundary condition that confirms flow continuity condition. In this analysis, oil starvation and open-end boundary conditions are considered at the inlet and outlet of the piston rings. The lubrication characteristic of each piston ring is obtained by an iterative method with sequential steps. It is revealed that piston rings are operated under oil starvation in most operating cycles and the result under these conditions are quite different from that with the fully-flooded assumption.

  • PDF

Visualization and Quantification of Oil Behavior inside Rotary Compressor (로터리 압축기 내부의 오일 거동 가시화 및 정량화)

  • Cho, Pil-Jae;Kim, Yoon-Seok;Lee, Seung-Kap;Youn, Young;Ko, Han-Seo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1580-1585
    • /
    • 2004
  • A quality of a refrigeration cycle and a reliability of a compressor can be reduced if a refrigerant including excessive lubricating oil is exhausted from the compressor. Thus, the analysis of the oil behavior inside the compressor is required to prevent the problem. A tested rotary compressor with visualization windows has been manufactured in this study to investigate the oil behavior using developed visualization techniques. The oil behaviors at various operating conditions have been quantified to obtain the relationship with the outlet pressure inside the compressor. Also, the effect of the operating conditions on the quantity of the exhausted oil from the rotary compressor has been investigated using the visualization technique.

  • PDF

Analysis of Oil Behavior inside Rotary Compressor Using Developed Visualization Technique

  • Cho Pil-Jae;Lee Seung-Kap;Youn Young;Ko Han-Seo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.2
    • /
    • pp.76-83
    • /
    • 2006
  • An efficiency of a refrigeration cycle and a reliability of a compressor can be reduced if a refrigerant including excessive lubricating oil is exhausted from the compressor. Thus, the analysis of the oil behavior inside the compressor is required to prevent the problem. A tested rotary compressor with visualization windows has been manufactured. in this study to investigate the oil behavior using developed visualization techniques. The oil behaviors at various operating conditions have been quantified to obtain the relationship with the outlet pressure inside the compressor. Also, the effect of the operating conditions on the quantity of the exhausted oil from the rotary compressor has been investigated using a manufactured test model.