• Title/Summary/Keyword: oil dispersant

Search Result 50, Processing Time 0.021 seconds

The Biodegradation Characteristics of the Mixtures of Bunker-A, B Oils with Dispersants in the Seawater

  • BAEK Joong-Soo;KIM Gwang-Su;CHO Eun-il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.6
    • /
    • pp.787-796
    • /
    • 1996
  • The biodegradation experiment, the TOD analysis and the element analysis for dispersant, Bunker-A oil and Bunker-B oil were conducted to study the biodegradation characteristics of a mixture of Bunker-A oil with dispersant and a mixture of Bunker-B oil with dispersant in the seawater. The results of biodegradation experiment showed 1mg of dispersant to be equivalent to 0.26 mg of $BOD_5$ and to 0.60 mg of $BOD_{20}$ in the natural seawater. The results of TOD analysis showed each 1 mg of dispersant, Bunker-A oil and Bunker-B oil to be equivalent to 2.37 mg, 2.94 mg and 2.74 mg of TOD, respectively. The results of element analysis showed carbon, hydrogen, nitrogen and phosphorus contents of dispersant to be $82.1\%,\;13.8\%,\;1.8\%\;and\;2.2\%$, respectively. Carbon and hydrogen contents of Bunker-A oil were found to be $73.3\%\;and\;13.5\%$, respectively, and carbon, hydrogen and nitrogen contents of Bunker-B oil to be $80.4\%,\;12.3\%\;and\;0.7\%$, respectively. Accordingly, the detection of nitrogen and phosphorus in dispersant shows that dispersants should be used with caution in coastal waters, with relation to eutrophication. The biodegradability of dispersant expressed as the ratio of $BOD_5/TOD$ was found to be $11.0\%$. As the mix ratios of dispersant to Bunker-A oil (3 mg/l) and a mixture of Bunker-B oil (3mg/l) were changed from 1 : 10 to 5 : 10, the biodegradabilities of a mixture of Bunker-A oil with dispersant and Bunker-B oil with dispersant increased from $2.1\%\;to\;7.2\%$ and from $1.0\%\;to\;4.4\%$, respectively. Accordingly, the dispersant belongs to the organic matter group of middle-biodegradability while mixtures in the mix ratio range of $1:10\~5:10$ belong to the organic matter group of low-biodegradability. The deoxygenation rate constant $(K_1)$ and ultimate biochemical oxygen demand $(L_0)$ obtained from the biodegradation experiment and Thomas slope method were found to be 0.125/day and 2.487 mg/l for dispersant (4 mg/l), respectively. $K_1\;and\;L_0$, were found to be $0.079\~0.131/day$ and $0.318\~2.052\;mg/l$ for a mixture of Bunker-A oil with dispersant and to be $0.106\~0.371/day$ and $0.262\~1.106\;mg/l$ for a mixture of Bunker-B oil with dispersant, respectively, having $1:10\~5:10$ mix ratios of dispersant to Bunker-A oil and Bunker-B oil. The ultimate biochemical oxygen demands of the mixtures increased as the mix ratio of dispersant to Bunker-A, B oils changed from 1 : 10 to 5 : 10. This suggests that the more dispersants are applied to the sea for the cleanup of Bunker-A oil or Bunker-B oil, the more decreases the dissolved oxygen level in the seawater.

  • PDF

Preparation and Properties of Mixed Solvent Type Low Toxic Concentrated Oil Dispersant on Oil (혼합 용매계 저독성 농축형 유분산제의 제조와 광유에 대한 분산효율 특성)

  • Yeom, Kuy-Seol;Kang, Doo-Whan;Kim, Won-Ki
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.29-38
    • /
    • 1997
  • Low toxic concentrated oil dispersant using n-Paraffin and Di(ethylene glycol)mono butylether mixed solvent was prepared, and tested by oil dispersant performance test method, and oil dispersant efficiency was measured using vertical shaking method to 3 kinds of Crude oil, Bunker oil and W/O emulsions with different physical properties by appling the prepared dispersant. Although toxicity test was performed with Flat fish and Rock fish by appling the mixed oils emulsified using prepared oil dispersant, couldn't find the toxicity to them. Concentrated oil dispersant prepared has a good dispersion efficiency of 97.2% after 0.5min settling time and 28.3% after 10min settling time to Bunker B oil with 10% water solution. Especially, the concentrated oil dispersant showing the low toxicity to Oryzias Latipes(24hr, TLm) was 54,000 ppm and to Brine Shrimp Artemia(24hr, TLm) was 51,000ppm, and also, it was completely biodegradated to 99.1% after $7{\sim}8$days.

Standardization for Quantitative Analysis of Aromatic Hydrocarbon in Oil Spill Dispersant (유처리제의 방향족 탄화수소 정량방법에 대한 표준화)

  • Cho, Jong-Hoi;Lim, Yoon-Taek;Kim, Woo-Seok;Yun, Young-Ja;Kim, Shin-Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.302-310
    • /
    • 2002
  • Demand for organic analysis increase as industries are growing and many products are spreaded in the daily life. One of many products is oil spill dispersant. It was used for oil accident in the ocean. When oil spill dispersant spread at the ocean, the petroleum in the ocean is dispersed. The oil spill dispersant is made of non ionic surfactant and petroleum oil. The non ionic surfactant disperse petroleum from oil accident. The other part is petroleum oil which has aromatic hydrocarbon. Because the aromatic hydrocarbon is cancerogenic material, it directly injure animals in the ocean. This cause the second pollution in the human body. Many oil accidents still are controlled by oil spill dispersant. Therefore quality control of the oil spill dispersant become important and this also demand for the exact quantitative analysis of aromatic hydrocarbon. Hereupon the first we develop separate petroleum oil from surfactant. The second standardize analytical method of aromatic hydrocarbon in the separated petroleum oil.

Toxicity on Laboratory Grown Plankton by the Oils Released from the Hebei Spirit Spill with Emphasis on a Dispersant Used in the Aftermath

  • Choi, Keun-Hyung;Lim, Sang-Min;Lee, Sung-Mi;Park, Gyung-Soo
    • Journal of Environmental Science International
    • /
    • v.19 no.4
    • /
    • pp.389-397
    • /
    • 2010
  • The in vitro toxicities of three crude oils of the Hebei Spirit were examined on laboratory grown plankton, with a focus on the effects of a dispersant. The specific growth rate of phytoplankton and the mortalities of two zooplankton were measured in response to exposure to various concentrations of water accommodated oil, dispersant or both. The effects of the oils varied among the plankton, but were generally low within the range of the oil concentrations used, with little difference in toxicity among the three oils. Such low toxicity appeared to be associated with weathering of the crude oils. Exposure to the dispersant, however, dramatically increased the mortality of zooplankton, with complete inhibition of phytoplankton growth. No synergistic toxic effect was observed with the crude oil and dispersant combination. A better decision making process could be crafted for future application of dispersant in the event of an oil spill in Korean waters to better protect the marine plankton community from the excessive use of dispersant.

Importance of Convergency Researches for the Appropriate Application of Oil Dispersant (오일분산제 적용을 위한 융합연구의 필요성)

  • Oh, Kyeongseok
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.12
    • /
    • pp.181-187
    • /
    • 2018
  • The historical consumption of oil dispersant was recorded during the protection plans after huge oil spill occurred in the Gulf of Mexico in 2010. As a well-known oil dispersant, Corexit 9500 was used and continuously blamed for the negative effects on environmental ecology. Nevertheless, US EPA still recognizes Corexit 9500 as a future oil dispersant that might be possibly sprayed again to oil slick. In order to develop alternative oil dispersants, it is important to impel the convergency works mainly from microbiologist, ecologist, environmentalist, chemist, and chemical engineer. In this paper, the major components of Corexit 9500 were introduced by chemical structures and physical properties. Presented were also the biodegradable process of dispersed oils and the possible candidates of biosurfactants.

Preparation of Poly(oxypropylene-oxyethylene glycol) Block Copolymers Oil Dispersant and Characteristics of W/O Emulsion to Weathering Crude Oils (Poly(oxypropylene-oxyethylene glycol) Block Copolymer계 유분산제의 제조와 Weathering Crude Oil에 대한 W/O 에멀젼 특성)

  • Kang, Doo-Whan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.204-211
    • /
    • 2003
  • Poly(oxypropylene-oxyethylene glycol) block copolymer(PBC) oil dispersant, which has low toxicity, high biodegradability, and an excellent dispersion efficiency to crude oils and weathered W/O emulsion was prepared by blending PBC, poly(oxyethylene) oleate, and sorbitan monooleate. The dispersing efficiency was measured by swirling flask method. The PBC oil dispersant had an excellent dispersing efficiency to weathered oil products formed as stable W/O emulsion, and the low toxicity, such as 4000 ppm to Oryzias Latipes(24 hr, TLM), Brine Shrimp Artemia(24 hr, TLM).

Developmental Abnormalities in Zebrafish Angiogenesis with Chronic Exposure to Crude Oil and Dispersant

  • Lee, Suyeon;Kim, Kyoohyun;Kim, Hyunjin;Yeo, Sang-Yeob
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.1
    • /
    • pp.10-18
    • /
    • 2013
  • Oil spills have occurred throughout the years of industrialization and represent a global challenge as they affect vast areas of the ocean. The toxicity of crude oil to aquatic organisms has been extensively investigated, but the potential impacts of crude oil on vertebrate development remain largely unknown. Here, we investigated the effects of dispersants used in treating a recent oil spill, as well as that of crude oil, on vertebrates by using the zebrafish (Danio rerio) model species, which has been widely used in empirical studies of both early embryonic development and adult physiology. Chronic exposure to crude oil resulted in marked developmental abnormalities, including pericardial edema, abnormal trunk vessel development, retardation of axonal branching, and abnormal jaw development. Embryonic development was affected more severely by exposure to the oil-dispersant combination than to the oil alone. Thus, the zebrafish in vivo model system suggests that dispersant treatment can have detrimental developmental effects on vertebrates and its potential impact on marine life, as well as humans, should be carefully considered in clean-up efforts at the site of an oil spill.

Effects of Oils and Dispersant on the Red Tide Organism Cochlodinium Polykrikoides (적조생물 Cochlodinium Polykrikoides에 대한 유류 및 유처리제의 영향)

  • Lee, Sam-Geun;Cho, Eun-Seob;Lim, Wol-Ae;Lee, Young-Sik
    • Journal of Environmental Science International
    • /
    • v.16 no.7
    • /
    • pp.799-804
    • /
    • 2007
  • Oil spill caused severe effects on the marine fauna and flora due to direct contact of organisms with the oil and even in regions not directly affected by the spill. This study was conducted to understand the effects of the oil spill accidents and the use of dispersant on the red tide of Cochlodinium polykrikoides. Crude oil produced in Kuwait, bunker-C, kerosene and diesel oil, and a chemical dispersant produced in Korea, were added with a series of 10 ppb to 100 ppm in the f/2-Si medium at $20^{\circ}C$ under a photon flux from cool white fluorescent tubes of $100\;mol\;m^{-2}\;s^{-1}$ in a 14: 10 h L:D cycle for the culture of C. polykrikoides. In low concentrations of ${\leq}$ 1 ppm of examined oils no impact on the growth of C. polykrikoides was recorded, while in high concentration of ${\geq}$ 10 ppm, cell density was significantly decreased with the range of 10 to 80% in comparison with the control. The growth of C. polykrikoides after the addition of the dispersant and the mixtures combined with oils and a dispersant of ${\geq}$ 10 ppm appeared to decrease, whereas the growth of C. polykrikoides exposed to ${\leq}$ 100 ppb showed little serious impact. However, almost all the C. polykrikoides cells were died regardless of a dispersant and combined mixtures within a few days after the addition of high concentrations.

Effects of stranded oils and dispersant clean-up on intertidal gastropods (유류오염과 유처리제를 이용한 전화작업이 조간대에 서식하는 고둥류에 미치는 영향)

  • 제종길;강성현
    • 한국해양학회지
    • /
    • v.26 no.4
    • /
    • pp.350-357
    • /
    • 1991
  • An experimental approach was applied to test the effects of stranded oils and dispersant cleanup on marine gastropods, Nodilittorina exigua, littorina brevicula and Purpura clavigera. They were exposed to Labuan crude, Dubai crude and Bunker C fuel oil. Direct oil contact caused death of gastropods within 96 hours. N. exigua and L. brevicula were more sensitive than P. clavigera at the exposure of Bunker C fuel oil. Toxic effects of Bunker C oil was slower than crude oils. direct contact to concentrated dispersant killed gastropods, while clean-up with diluted dispersant still gave severe damage. P. clavigera could escape from dispersed crude oil below 250 ppm. Oiling and dispersant clean-up may have severe effects on marine gastropods by rendering them washed out to sea.

  • PDF

Effects of Preparation Conditions on Thermal and Electrical Properties of Oil-based Nanofluids for Transformer Application (변압기 냉각용 오일 기지 나노유체의 제조조건이 열 및 전기적 특성에 미치는 영향)

  • Choi, Cheol;Yoo, Hyun-Sung;Oh, Jae-Myung
    • Korean Journal of Materials Research
    • /
    • v.17 no.9
    • /
    • pp.493-499
    • /
    • 2007
  • Oil-based nanofluids were prepared by dispersing nonconducting fibrous $Al_2O_3$ and spherical AlN nanoparticles in transformer oil. In this study, the effects of wet grinding and surface modification of particles on thermal and electrical properties of nanofluids were investigated. Grinding experiments were conducted with high-speed bead mill and ultrasonic homogenizer and nanoparticles were surface modified by oleic acid and polyoxyethylene alkyl acid ester(PAAE) in n-hexane or transformer oil, at the same time. It is obvious that the combination of nanoparticle, dispersant and dispersion solvent is very important for the dispersity of nanofluids. For nanofluids containing 1.0vol.% AlN particles in transformer oil, the enhancement of thermal conductivity was 11.6% compared with pure transformer oil. However, the electric-insulating property of AlN nanofluids was very low due to used dispersant itself. Therefore, the effect of the dispersant on thermal/electrical/physical properties of the transformer oil should be considered before selecting a proper dispersant.