• 제목/요약/키워드: oil & gas pipeline

검색결과 91건 처리시간 0.041초

Fixture를 이용한 토양 절연파괴 실험 (Soil Breakdown Test using Fixture)

  • 이현구;하태현;정동학;하윤철;김대경;배정효
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.384-385
    • /
    • 2007
  • The fault current through the earth originated from a power line ground fault might cause arcing through the soil to an adjacent pipeline, which might bring about not only a catastrophic accident such as gas explosion and oil leakage but also a hazard to the safety of workers responsible for the maintenance and repair of the pipeline. In this paper we experimented on the soil breakdown test using the fixture and outlined the standards for the separation distance of a buried pipeline adjacent to the power line tower.

  • PDF

Research on Damage Identification of Buried Pipeline Based on Fiber Optic Vibration Signal

  • Weihong Lin;Wei Peng;Yong Kong;Zimin Shen;Yuzhou Du;Leihong Zhang;Dawei Zhang
    • Current Optics and Photonics
    • /
    • 제7권5호
    • /
    • pp.511-517
    • /
    • 2023
  • Pipelines play an important role in urban water supply and drainage, oil and gas transmission, etc. This paper presents a technique for pattern recognition of fiber optic vibration signals collected by a distributed vibration sensing (DVS) system using a deep learning residual network (ResNet). The optical fiber is laid on the pipeline, and the signal is collected by the DVS system and converted into a 64 × 64 single-channel grayscale image. The grayscale image is input into the ResNet to extract features, and finally the K-nearest-neighbors (KNN) algorithm is used to achieve the classification and recognition of pipeline damage.

지하철 누설전류 모니터링용 실시간 무선 원격 감시 시스템 (Real time Wireless Remote Monitoring System for Stray Current of Subway System)

  • 배정효;하윤철;하태현;이현구;이재덕;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2729-2731
    • /
    • 2005
  • In present, most of metallic structures(gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway and power line in seoul. Moreover subway system and power line make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential due to stray current of subway system. In this paper, results of development about Real-time Wireless Remote Monitoring System for Stray Current of Subway System are presented.

  • PDF

지하철 누설전류의 실시간 무선 원격 감시 시스템용 매설형 기준전극 (The Buried Type Reference Electrode for Real time Wireless Remote Monitoring System for Stray Current of Subway System)

  • 배정효;하윤철;하태현;이현구;이재덕;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2732-2734
    • /
    • 2005
  • In present, most of metallic structures(gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway and power line in seoul. Moreover subway system and power line make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential due to stray current of subway system. So, we have developed the Real-time Wireless Remote Monitoring System for Stray Current of Subway System. In this system, the permanent buried type reference electrode is necessary. In this paper, results of development about the permanent buried type reference electrode($Cu/CuSO_4$) are presented.

  • PDF

다공성 세라믹(${\alpha}-Al_{2}O_{3}$)를 이용한 지중 매설형 기준전극 (The Development of Buried Type Reference Electrode Using Porous Ceramic(${\alpha}-Al_{2}O_{3}$))

  • 배정효;하윤철;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.145-147
    • /
    • 2005
  • In present, most of metallic structures(gas pipeline, oil pipeline, water pipeline, etc) are running parallel with subway and power line in seoul. Moreover subway system and power line make a stray current due to electrical corrosion on metallic structures. The owner of metallic structures has a burden of responsibility for the protection of corrosion and the prevention against big accident such as gas explosion or soil pollution and so on. So, they have to measure and analyze the data about P/S(Pipe to Soil) potential due to stray current of subway system. So, we have developed the Real-time Wireless Remote Monitoring System for Stray Current of Subway System. In this system, the permanent buried type reference electrode is necessary. In this paper, results of development of buried type reference electrode using porous ceramic$({\alpha}-Al_{2}O_{3})$ are presented.

  • PDF

국가 기간 시설물의 전식 대책(안) (A Mitigation Methode of DC Stray Current for Underground Metallic Structures in KOREA)

  • 배정효;하윤철;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1609-1611
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) system of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system, Boding ICCP system. In this paper, the mechanism of mitigation method of DC stray current for underground metallic structures is described.

  • PDF

국가기간시설물의 전식대책(안) 및 그 적용 사례(1) (A Case Study(1) of Mitigation Methode of DC Stray Current for Underground Metallic Structures in KOREA)

  • 배정효;하윤철;하태현;이현구;김대경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1612-1614
    • /
    • 2007
  • The owner of underground metallic structures (gas pipeline, oil pipeline, water pipeline, etc) has a burden of responsibility for the corrosion protection in order to prevent big accidents like gas explosion, soil pollution, leakage and so on. So far, Cathodic Protection(CP) technology have been implemented for protection of underground systems. The stray current from DC subway system in Korea has affected the cathodic protection (CP) design of the buried pipelines adjacent to the railroads. In this aspect, KERI has developed a various mitigation method, drainage system through steel bar under the rail, a stray current gathering mesh system, insulation method between yard and main line, distributed ICCP(Impressed Current Cathodic System), High speed response rectifier, restrictive drainage system. We installed the mitigation system at the real field and test of its efficiency in Busan and Seoul, Korea. In this paper, the results of field test, especially, distributed ICCP system is described.

  • PDF

고압 LNG 배관망의 특성 및 비용절감 효과 (Features and Cost Reduction Effect of High Pressure LNG Pipeline Network)

  • 김호연;홍영수;노주영;엄윤성;김철만
    • 에너지공학
    • /
    • 제17권3호
    • /
    • pp.139-144
    • /
    • 2008
  • 최근 유가의 고공행진 때문에 한국은 해외 에너지 자원개발뿐만 아니라 에너지 소비를 줄이기 위한 국가적 정책으로 기존 설비의 에너지 효율을 증가시키는 방안을 모색하는 것이 필요한 시점이다. 따라서 본 연구는 이런 국가적 사안에 부합하고자 인천생산기지 고압 LNG 배관망에 대하여 수정유량방정식을 사용한 Newton Method로 접근하였고, 유창조절밸브(FCV)에 의해 지배적인 영향을 받는 것을 확인할 수 있었다. 또한, 고압펌프는 유량조절밸브 50%의 개도율에서 최고효율을 보여 주었고, 고압배관망 내에서 배관저항곡선은 LNG 헤드가 1,500m 이상이 되어야만 토출이 가능한 것을 보였다. 고압펌프의 운전점으로부터 운전비용을 산출하였고, 최고 효율시 운전비용과 비교하여 운전비용을 절감할 수 있는 금액을 산출하였다. 특히 일간 시간대별 운전비용 절감액뿐만 아니라 연간 일별 운전비용 절감액을 산출하였으며, 그 결과 고압배관망은 연간 138백만원을 절감할 수 있다. 이것은 연간 고압펌프 1기당 9,823천원을 절감할 수 있다는 것을 의미한다. 결론적으로 본 연구는 복잡한 고압 LNG 배관망에서 고압펌프의 운전특성과 운전비용 절감효과를 확인할 수 있었다. 또한 이것은 미시적으로 생산기지의 효율적 미래운영에 대한 기여와 더불어 거시적으로 국가 에너지 경쟁력 제고에 기여할 수 있을 것이다.

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

고강도-고인성 라인파이프강 개발 동향 (Developing Trend of High Strength and Good Toughness Linepipe Steel)

  • 유장용;강기봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.216-221
    • /
    • 2004
  • Linepipe steels with a low carbon acicular ferrite microstructure have been recently developed to accommodate the current transportation condition of the gas and oil industry, and they are finally applied to West- East pipeline project in China. By adopting acicular microstructure, both better formability and better toughness could be obtained due to low yield ratio and fine grained microstructure. Mechanical properties of pipe are not greatly different from those of base plates or hot coils with a microstructure of acicular ferrite. Merits of introducing higher strength steels are well known, i.e., reducing the gauge of pipe and the material cost, increasing the welding speed and decreasing construction cost because of reducing the construction period. Threfore, gas and oil industry has required higher strength steel than APIX70 grade steel. Under this background, API-X80 steel has been developed and shall be applied to the several projects. In this paper, developing stage of API-X80 steel is also presented and discussed.

  • PDF