• Title/Summary/Keyword: ohmic layer

Search Result 168, Processing Time 0.024 seconds

Differences in Design Considerations between InGaN and Conventional High-Brightness Light-Emitting Diodes

  • Lee, Song-Jae
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.13-21
    • /
    • 1998
  • Based on the escape cone concepts, high-brightness light-emitting diodes (LEDs) have been analyzed. In AlGaAs or InGaAlP LEDs, photon absorption in the ohmic region under the electrode is known to be significant. Thus, ins general, a thick window layer (WL) and a transparent substrate (TS) would minimize photon shielding by the electrodes and considerably improve photon output coupling efficiency. However, the schemes do not seem to be necessary in InGaN system. Photon absorption in ohmic contact to a wide bandgap semiconductor such as GaN may be negligible and, as a result, the significant photon shielding by the electrodes will not degrade the photon output coupling efficiency so much. The photon output coupling efficiency estimated in InGaN LEDs is about 2.5 - 2.8 times that of the conventional high-brightness LED structures based on both WL and TS schemes. As a result, the extenal quantum efficiency in InGaN LEDs is as high as 9% despite the presumably very low internal quantum efficiency.

Effects of an Aluminum Contact on the Carrier Mobility and Threshold Voltage of Zinc Tin Oxide Transparent Thin Film Transistors

  • Ma, Tae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.609-614
    • /
    • 2014
  • We fabricated amorphous zinc tin oxide (ZTO) transparent thin-film transistors (TTFTs). The effects of Al electrode on the mobility and threshold voltage of the ZTO TTFTs were investigated. It was found that the aluminum (Al)-ZTO contact decreased the mobility and increased the threshold voltage. Traps, originating from $AlO_x$, were assumed to be the cause of degradation. An indium tin oxide film was inserted between Al and ZTO as a buffer layer, forming an ohmic contact, which was revealed to improve the performance of ZTO TTFTs.

Study on the Electrical Conduction Mechanism of Organic Light-Emitting Diodes (OLEDs) (유기발광소자(OLED)의 전기전도메커니즘에 대한 고찰)

  • Lee, Won Jae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.6-10
    • /
    • 2018
  • Organic light emitting devices have attracted the attention of many people because of their high potential for self-emission and flexible display devices. However, due to limitations in device efficiency and lifetime, partial commercialization is underway. In this paper, we have investigated the electrical conduction mechanism of the organic light emitting device by the temperature and the thickness of the light emitting layer through the current - voltage characteristics with respect to the conduction mechanism directly affecting the efficiency and lifetime of the organic light emitting device. Through the study, it was found that the conduction in the low electric field region is caused by the movement of the heat excited charge in the ohmic region and the tunneling of the electric charge due to the high electric field in the high electric field region.

Electrical Properties of Carbon-Based Hybrid Resistor Bonded with Carbon Nanotube Paste (탄소나노튜브 페이스트 접합에 의한 탄소계 복합저항체의 전기적 특성)

  • Sunwoo Lee;Eun Min Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.5
    • /
    • pp.482-487
    • /
    • 2023
  • A carbon-based hybrid resistor was fabricated using carbon nanotube (CNT) paste as an adhesive layer to establish electrically continuous ohmic contacts between CNT sheets and different CNT sheet or copper based metal alloy plates, and its electrical properties were evaluated. CNT sheets were fabricated using vacuum filtration with a CNT solution dispersed in isopropyl alcohol (IPA) solvent. The electrical characteristics of these carbon-based hybrid resistors were investigated. The CNT paste fulfilled the requirements for forming ohmic contacts between CNT sheets and metal alloy plates, which was attributed to the lowest work function difference and excellent wettability at the interface.

The Formation and Characteristics of Titanium Germanide with Cr capping layer on n-Ge(100) Substrate (Cr capping layer를 이용한 n-Ge(100) 기판에서의 Ti germanide 형성과 특성에 관한 연구)

  • Mun, N.J.;Choi, C.J.;Shim, K.H.;Park, D.S.;Yang, H.Y.;Jeong, M.R.;Yoon, C.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.154-154
    • /
    • 2009
  • Cr capping layer를 이용하여 Titanium germanide의 열적 안정성을 향상시키는 연구를 수행하였다. n-type Ge(100) 기판 위에 전자빔 증착기를 이용하여 30nm 두께의 Ti와 Cr capping layer를 증착하고 $400\;^{\circ}C$에서 $800\;^{\circ}C$까지 30초간 N2 분위기로 급속 열처리하여 Ti germanide를 형성하였다. XRD결과로부터 Cr capping layer의 유무에 관계 없이 Ti germanide가 형성된 것을 관찰할 수 있었다. Ge 기판 위에 CTLM 패턴을 형성하고 실험을 진행하여 Ti germanide의 I-V 측정 데이터를 통해 Ohmic 특성을 알아보았고, contact resistance, sheet resistance, specific contact resistance를 구하였다.

  • PDF

Carrier Lfetime and Anormal Cnduction Penomena in Silicon Epitaxial Layer-substrate Junction (Epitaxial에 의한 Si epi층의 케리어 수명과 P-N접합의 이상전도현상)

  • 성영권;민남기;김승배
    • 전기의세계
    • /
    • v.26 no.5
    • /
    • pp.83-89
    • /
    • 1977
  • This paper described the minority carrier lifetime in Si epitaxial layer, and also the voltage (V) versus current (I) characteristics of high resistivity Si epitaxial layer0substrate junction. The measured lifetime in Si epi-layer was much shorter than in bulk, and the temperature dependence of lifetime was found to agree well with Shockley-Read model of recombination which applies to high resistivity n-type materials. The V-I curve showed; an ohmic region (I.var.V), a sublinear region (I.var.V$^{1}$2/), a space charge limited current region (I.var.V$^{2}$), and finally a negative resistance region. We investigated these phenomena by the theory of the relaxation semiconductor.

  • PDF

Mathematical Modeling on Electrodeposition of Compositionally Modulated Cu-Ni Alloy (전기화학적 방법에 의한 Cu-Ni 다층박막합금의 수학적 모델링)

  • 박경완;이철경;손헌준
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.4
    • /
    • pp.223-233
    • /
    • 1994
  • It is well known that compositionally modulated Cu-Ni alloy can be produced by an electrochemical method in Ni sulfate solution containing trace amount of Cu. a mathematical model is presented to describe the current distribution and weight percent of Cu in Ni layer on the rotating disk electrode. The model includes convective-diffusion equation, the Laplace's equation and various overpotentials, and is solved numerically. The thickness of Cu layer is almost uniform whereas the thickness of Ni layer as well as the Ni/Cu weight ratio are increased approaching to the edge of the disk. These results agree well with the experimental values. The ohmic potential drop is suggested as a major cause of a nonuniformity in Ni layer. The optimum plating condition for the fabrication of susperlattice is proposed based on the results of this study.

  • PDF

Analysis of Increasing the Conduction of V2O5 Thin Film on SiO2 Thin Film (SiO2 절연박막에 의해서 바나듐옥사이드 박막이 전도성이 높아지는 원인분석)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.14-18
    • /
    • 2018
  • Generally. the Ohmic's law is an important factor to increase the conductivity in a micro device. So it is also known that the Ohmic contact in a semiconductor device is import. The PN junction as a structure of semiconductor involves the depletion layer, and this depletion layer induces the non linear electrical properties and also makes the Schottky contact as an intrinsic characteristics of semiconductor. To research the conduction effect of insulators in the semiconductor device, $SiO_2$ thin film and $V_2O_5/SiO_2$ thin film were researched by using the current-voltage system. In the nano electro-magnetic system, the $SiO_2$ thin film as a insulator had the non linear Schottky contact, and the as deposited $V_2O_5$ thin film had the linear Ohmic contact owing to the $SiO_2$ thin film with superior insulator's properties, which decreases the leakage current. In the positive voltage, the capacitance of $SiO_2$ thin film was very low, but that of $V_2O_5$ thin film increased with increasing the voltage. In the normal electric field system, it was confirmed that the conductivity of $V_2O_5$ thin film was increased by the effect of $SiO_2$ thin film. It was confirmed that the Schottky contact of semiconductors enhanced the performance of electrical properties to increased the conductivity.

Correlation between the Active-Layer Uniformity and Reliability of Blue Light-Emitting Diodes (청색 발광 다이오드에서 활성층의 균일성과 신뢰성 사이의 상관관계 고찰)

  • Jang Jin-Won;Kim Sang-Bae
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.27-34
    • /
    • 2005
  • We have investigated the correlation between the active-layer uniformity and reliability of InGaN/GaN blue LEDs. According to initial characteristics, the devices are classified into two groups: group I devices of uniform light-emission and group II devices of non-uniform light-emission. The group II devices are more dependent on temperature and we have found two degradation mechanisms through reliability test. One is bulk degradation in which the degradation occurred over the entire chip and another one is edge degradation in which the degradation occurred from the edge of the chip. Bulk degradation caused by the nonradiative defects is found to be faster in group II devices while there is no difference in the rate of the much faster edge degradation, where darkening starts from the n-Ohmic contact edge. Therefore, more uniform active layer, more uniform current spreading, and the passivation of the dry-etched side-wall are essential for the high reliability of InGaN/GaN LEDs.

Improved Contact property in low temperature process via Ultrathin Al2O3 layer (Al2O3 층을 이용한 저온공정에서의 산화물 기반 트랜지스터 컨택 특성 향상)

  • Jeong, Seong-Hyeon;Sin, Dae-Yeong;Jo, Hyeong-Gyun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.55-55
    • /
    • 2018
  • Recently, amorphous oxides such as InGaZnO (IGZO) and InZnO (IZO) as a channel layer of an oxide TFT have been attracted by advantages such as high mobility, good uniformity, and high transparency. In order to apply such an amorphous oxide TFTs to a display, the stability in various environments must be ensured. In the InGaZnO which has been studied in the past, Ga elements act as a suppressor of oxygen vacancy and result in a decreased mobility at the same time. Previous studies have been showed that the InZnO, which does not contain Ga, can achieve high mobility, but has relatively poor stability under various instability environments. In this study, the TFTs using $IZO/Al_2O_3$ double layer structure were studied. The introduction of an $Al_2O_3$ interlayer between source/drain and channel causes superior electrical characteristics and electrical stability as well as reduced contact resistance with optimally perfect ohmic contact. For the IZO and $Al_2O_3$ bilayer structures, the IZO 30nm IZO channels were prepared at $Ar:O_2=30:1$ by sputtering and the $Al_2O_3$ interlayer were depostied with various thickness by ALD at $150^{\circ}C$. The optimal sample exhibits considerably good TFT performance with $V_{th}$ of -3.3V and field effect mobility of $19.25cm^2/Vs$, and reduced $V_{th}$ shift under positive bias stress stability, compared to conventional IZO TFT. The enhanced TFT performances are closely related to the nice ohmic contact properties coming from the defect passivation of the IZO surface inducing charge traps, and we will provide the detail mechanism and model via electrical analysis and transmission line method.

  • PDF