• Title/Summary/Keyword: ohmic

Search Result 614, Processing Time 0.034 seconds

Characterization of Polyester Cloth as an Alternative Separator to Nafion Membrane in Microbial Fuel Cells for Bioelectricity Generation Using Swine Wastewater

  • Kim, Taeyoung;Kang, Sukwon;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa;Jang, Jae Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2171-2178
    • /
    • 2016
  • Polyester cloth (PC) was selected as a prospective inexpensive substitute separator material for microbial fuel cells (MFCs). PC was compared with a traditional Nafion proton exchange membrane (PEM) as an MFC separator by analyzing its physical and electrochemical properties. A single layer of PC showed higher mass transfer (e.g., for $O_2/H^+/ions$) than the Nafion PEM; in the case of oxygen mass transfer coefficient ($k_o$), a rate of $50.0{\times}10^{-5} cm{\cdot}s^{-1}$ was observed compared with a rate of $20.8{\times}10^{-5}cm/s$ in the Nafion PEM. Increased numbers of PC layers were found to reduce the oxygen mass transfer coefficient. In addition, the diffusion coefficient of oxygen ($D_O$) for PC ($2.0-3.3{\times}10^{-6}cm^2/s$) was lower than that of the Nafion PEM ($3.8{\times}10^{-6}cm^2/s$). The PC was found to have a low ohmic resistance ($0.29-0.38{\Omega}$) in the MFC, which was similar to that of Nafion PEM ($0.31{\Omega}$); this resulted in comparable maximum power density and maximum current density in MFCs with PC and those with Nafion PEMs. Moreover, a higher average current generation was observed in MFCs with PC ($104.3{\pm}15.3A/m^3$) compared with MFCs with Nafion PEM ($100.4{\pm}17.7A/m^3$), as well as showing insignificant degradation of the PC surface, during 177 days of use in swine wastewater. These results suggest that PC separators could serve as a low-cost alternative to Nafion PEMs for construction of cost-effective MFCs.

Effect of Epoxy Mixed with Nafion Solution as an Anode Binder on the Performance of Microbial Fuel Cell (산화전극 결합제로서 나피온용액에 혼합된 에폭시가 미생물연료전지의 성능에 미치는 영향)

  • Song, Young-Chae;Kim, Dae-Seop;Woo, Jung-Hui
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • The composite anodes of exfoliated graphite (EG) and multiwall carbon nanotube (MWCNT) were fabricated by using the binders with different content of epoxy in Nafion solution. The influence of the epoxy content in the anode binder on the performance of microbial fuel cell (MFC) was examined in a batch reactor. With the increase in the epoxy content in the anode binder, increase in physical binding force was observed, but at the same time an increase in the internal resistance of MFC was also observed. This was due to the increase in activation and ohmic resistance. For the anode binder without epoxy, the maximum power density was $1,892mW/m^2$, but a decrease in maximum power density was observed with the increase in the epoxy content in the anode binder. With the epoxy content of 50% in the anode binder, a decrease in the maximum power density to $1,425mW/m^2$ was observed, which about 75.3% of the anode binder without epoxy is. However, the material consisting of the same amount of epoxy and Nafion solution is a good alternative for anode binder in terms of durability and economics of MFC.

Ridge Formation by Dry-Etching of Pd and AlGaN/GaN Superlattice for the Fabrication of GaN Blue Laser Diodes

  • Kim, Jae-Gwan;Lee, Dong-Min;Park, Min-Ju;Hwang, Seong-Ju;Lee, Seong-Nam;Gwak, Jun-Seop;Lee, Ji-Myeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.391-392
    • /
    • 2012
  • In these days, the desire for the precise and tiny displays in mobile application has been increased strongly. Currently, laser displays ranging from large-size laser TV to mobile projectors, are commercially available or due to appear on the market [1]. In order to achieve a mobile projectors, the semiconductor laser diodes should be used as a laser source due to their size and weight. In this presentation, the continuous etch characteristics of Pd and AlGaN/GaN superlattice for the fabrication of blue laser diodes were investigated by using inductively coupled $CHF_3$ and $Cl_2$ -based plasma. The GaN laser diode samples were grown on the sapphire (0001) substrate using a metal organic chemical vapor deposition system. A Si-doped GaN layer was grown on the substrate, followed by growth of LD structures, including the active layers of InGaN/GaN quantum well and barriers layer, as shown in other literature [2], and the palladium was used as a p-type ohmic contact metal. The etch rate of AlGaN/GaN superlattice (2.5/2.5 nm for 100 periods) and n-GaN by using $Cl_2$ (90%)/Ar (10%) and $Cl_2$ (50%)/$CHF_3$ (50%) plasma chemistry, respectively. While when the $Cl_2$/Ar plasma were used, the etch rate of AlGaN/GaN superlattice shows a similar etch rate as that of n-GaN, the $Cl_2/CHF_3$ plasma shows decreased etch rate, compared with that of $Cl_2$/Ar plasma, especially for AlGaN/GaN superlattice. Furthermore, it was also found that the Pd which is deposited on top of the superlattice couldn't be etched with $Cl_2$/Ar plasma. It was indicating that the etching step should be separated into 2 steps for the Pd etching and the superlattice etching, respectively. The etched surface of stacked Pd/superlattice as a result of 2-step etching process including Pd etching ($Cl_2/CHF_3$) and SLs ($Cl_2$/Ar) etching, respectively. EDX results shows that the etched surface is a GaN waveguide free from the Al, indicating the SLs were fully removed by etching. Furthermore, the optical and electrical properties will be also investigated in this presentation. In summary, Pd/AlGaN/GaN SLs were successfully etched exploiting noble 2-step etching processes.

  • PDF

Synthesis and Characterization of La0.75Sr0.25FeO3 Used as Cathode Materials for Solid Oxide Fuel Cell by GNP Method (GNP법을 이용한 고체산화물 연료전지의 공기극용 La0.75Sr0.25FeO3의 제조 및 특성)

  • Park, Ju-Hyun;Son, Hui-Jeong;Lim, Tak-Hyoung;Lee, Seung-Bok;Yun, Ki-Seok;Yoon, Soon-Gil;Shin, Dong-Ryul;Song, Rak-Hyun
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • We synthesized and investigated $La_{0.75}Sr_{0.25}FeO_3$ by Glycine Nitrate Process(GNP) method used as cathode materials for SOFC(solid oxide fuel cell). Optimized amount of glycine is 3.17 mol. ICP elemental composition analysis indicated that the stoichiometry of the synthesized powders have nearly nominal values. SEM images and XRD patterns reveal that the synthesized powder has uniform size distribution and high degree of crystallinity. The sample powders were isostatically pressed to form a pellet. The green body was sintered at $1200^{\circ}C$ and the relative density of the sintered specimens were measured by Archimedes mettled. We measured electrochemical performance of LSF by AC impedance spectroscopy. Resistance of LSF shows lower value than that of LSM throughout all temperature region. The anode-supported solid oxide fuel cell showed a performance of $342mW/cm^2(0.7V,\;488mA/cm^2)$ at $750^{\circ}C$. The electrochemical characteristics of the single cell were examined by at impedance method.

$1{times}8$ Array of GaAs/AlGaAs quantum well infrared photodetector with 7.8$\mu\textrm{m}$ peak response ($1{times}8$ 배열, 7.8 $\mu\textrm{m}$ 최대반응 GaAs/AlGaAs 양자우물 적외선 검출기)

  • 박은영;최정우;노삼규;최우석;박승한;조태희;홍성철;오병성;이승주
    • Korean Journal of Optics and Photonics
    • /
    • v.9 no.6
    • /
    • pp.428-432
    • /
    • 1998
  • We fabricated 1$\times$8 array of GaAs/AlGaAs quantum well infrared photodetectors for the long wavelength infrared detection which is based on the bound-continuum intersubband transition, and characterized its electrical and optical properties. The device was grown on SI-GaAs(100) by the molecular beam epitaxy and consisted of 25 period of 40 ${\AA} $ GaAs well and 500 ${\AA} $ $Al_{0.28} Ga_{0.72}$ As barrier. To reduce the possibility of interface states only the center 20 ${\AA} $ of the well was doped with Si ($N_D=2{\times}10^{18} cm^{-3}$). We etched the sample to make square mesas of 200$\times$200 $\mu\textrm{m}^2$ and made an ohmic contact on each pixel with Au/Ge. Current-voltage characteristics and photoresponse spectrum of each detector reveal that the array was highly uniform and stable. The spectral responsivity and the detectivity $D^*$ were measured to be 180,260 V/W and $4.9{\times}10^9cm\sqrt{Hz}/W$ respectively at the peak wavelength of $\lambda$ =7.8 $\mu\textrm{m}$ and at T=10 K.

  • PDF

n-type GaN 위에 형성된 Ti/Al/Mo/Au 및 Ti/Al/Ni/Au 오믹 접합의 isolation 누설전류 분석

  • Hwang, Dae;Ha, Min-U;No, Jeong-Hyeon;Choe, Hong-Gu;Song, Hong-Ju;Lee, Jun-Ho;Park, Jeong-Ho;Han, Cheol-Gu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.266-267
    • /
    • 2011
  • 질화갈륨(GaN)은 높은 전자이동도 및 높은 항복전계를 가지며 낮은 온저항으로 인하여 에너지효율이 우수하기 때문에 고출력 전력소자 분야에서 많은 관심을 받고 있다. GaN을 이용한 고출력 전력소자의 경우 상용화 수준에 근접할 만한 기술적 진보가 있었으나, 페르미 레벨 고정(Fermi-level pinning) 현상, 소자의 누설전류 등 아직 해결되어야 할 문제를 갖고 있다. 본 연구에서는 실리콘 기판 위에 성장된 GaN 에피탁시를 활용한 고출력 전력소자의 누설전류를 억제시키기 위해 오믹 접합 중 Au의 상호확산을 억제하는 중간층 금속(Mo or Ni)을 변화시켰으며 오믹 열처리 온도에 따른 특성을 비교 연구하였다. $Cl_2$$BCl_3$를 이용하여 0.6 ${\mu}m$ 깊이의 메사 구조가 활성영역을 형성하였고, Si 도핑된 n-GaN 위에 Ti/Al/Mo/Au (20/100/25/200 nm) 와 Ti/Al/Ni/Au (20/100/25/200 nm) 오믹 접합을 각각 설계, 제작하였다. 오믹 열처리시의 GaN 표면오염을 방지하기 위해 $SiO_2$ 희생층을 증착하였다. 오믹 접합 형성을 위해 각 750$^{\circ}C$, 800$^{\circ}C$, 850$^{\circ}C$에서 30초간 열처리를 진행 하였으며, 이후 6 : 1 BOE 용액으로 $SiO_2$ 희생층을 제거하였다. 750, 800, 850$^{\circ}C$에서 Ti/Al/Mo/Au 구조의 오믹 접합 저항은 각 2.56, 2.34, 2.22 ${\Omega}$-mm 이었으며, Ti/Al/Ni/Au 구조의 오믹 접합 저항은 각 43.72, 2.64, 1.86 ${\Omega}$-mm이었다. Isolation 누설전류를 측정하기 위해서 두 개의 오믹 접합 사이에 메사 구조가 있는 테스트 구조를 제안하였다. Isolation 누설전류는 Ti/Al/Mo/Au 구조에서 두 오믹 접합 사이의 거리가 25 ${\mu}m$이고 100 V일 때 750, 800, 850 $^{\circ}C$의 열처리 온도에서 각 1.25 nA/${\mu}m$, 2.48 nA/${\mu}m$, 8.76 nA/${\mu}m$이었으며, Ti/Al/Ni/Au 구조에서는 각 1.58 nA/${\mu}m$, 2.13 nA/${\mu}m$, 96.36 nA/${\mu}m$이었다. 열처리 온도가 증가하며 오믹 접합 저항은 감소하였으나 isolation 누설전류는 증가하였다. 750$^{\circ}C$ 열처리에서 오믹 접합 저항은Ti/Al/Mo/Au 구조가 Ti/Al/Ni/Au 구조보다 약 17배 우수하였고, 850$^{\circ}C$ 고온의 열처리 경우 Ti/Al/Mo/Au 구조의 isolation 누설전류는 8.76 nA/${\mu}m$로 Ti/Al/Ni/Au의 누설전류 96.36 nA/${\mu}m$보다 약 11배 우수하였다. Ti/Al/Mo/Au가 Ti/Al/Ni/Au 보다 오믹 접합 저항과 isolation 누설전류 측면에서 전력용 GaN 소자에 적합함을 확인하였다.

  • PDF

Electrical Characteristics of c-Si Shingled Photovoltaic Module Using Conductive Paste based on SnBiAg (SnBiAg 전도성 페이스트를 이용한 Shingled 결정질 태양광 모듈의 전기적 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Kang, Min Gu;Cho, Hyeon Soo;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.528-533
    • /
    • 2018
  • In recent years, solar cells based on crystalline silicon(c-Si) have accounted for much of the photovoltaic industry. The recent studies have focused on fabricating c-Si solar modules with low cost and improved efficiency. Among many suggested methods, a photovoltaic module with a shingled structure that is connected to a small cut cell in series is a recent strong candidate for low-cost, high efficiency energy harvesting systems. The shingled structure increases the efficiency compared to the module with 6 inch full cells by minimizing optical and electrical losses. In this study, we propoese a new Conductive Paste (CP) to interconnect cells in a shingled module and compare it with the Electrical Conductive Adhesives (ECA) in the conventional module. Since the CP consists of a compound of tin and bismuth, the module is more economical than the module with ECA, which contains silver. Moreover, the melting point of CP is below $150^{\circ}C$, so the cells can be integrated with decreased thermal-mechanical stress. The output of the shingled PV module connected by CP is the same as that of the module with ECA. In addition, electroluminescence (EL) analysis indicates that the introduction of CP does not provoke additional cracks. Furthermore, the CP soldering connects cells without increasing ohmic losses. Thus, this study confirms that interconnection with CP can integrate cells with reduced cost in shingled c-Si PV modules.

Properties of Pt/${Al_0.33}{Ga_0.67}N$ Schottky Type UV Photo-detector (Pt 전극을 이용한 ${Al_0.33}{Ga_0.67}N$ 쇼트키형 자외선 수광소자의 동작특성)

  • 신상훈;정영로;이재훈;이용현;이명복;이정희;이인환;한윤봉;함성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.486-493
    • /
    • 2003
  • Schottky type A $l_{0.33}$G $a_{0.67}$N ultraviolet photodetectors were fabricated on the MOCVD grown AlGaN/ $n^{+}$-GaN and AlGaN/AlGaN interlayer/ $n^{+}$-GaN structures. The grown layers have the carrier concentrations of -$10^{18}$, and the mobilities were 236 and 269 $\textrm{cm}^2$/V.s, respectively. After mesa etching by ICP etching system, the Si3N4 layer was deposited for passivation between the contacts and Ti/AL/Ni/Au and Pt were deposited for ohmic and Schottky contact, respectively. The fabricated Pt/A $l_{0.33}$G $a_{0.67}$N Schottky diode revealed a leakage current of 1 nA for samples with interlayer and 0.1$\mu\textrm{A}$ for samples without interlayer at a reverse bias of -5 V. In optical measurement, the Pt/A $l_{0.33}$G $a_{0.67}$N diode with interlayer showed a cut-off wavelength of 300 nm, a prominent responsivity of 0.15 A/W at 280 nm and a UV-visible extinction ratio of 1.5x$10^4./TEX>.

Fabrication and Characteristics of Infrared Photodiode Using Insb Wafer with p-i-n Structure (p-i-n 구조의 InSb 웨이퍼를 이용한 적외선 광다이오드의 제조 및 그 특성)

  • Cho, Jun-Young;Kim, Jong-Seok;Son, Seung-Hyun;Lee, Jong-Hyun;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.239-246
    • /
    • 1999
  • A highly sensitive photovoltaic infrared photodiode was fabricated for detecting infrared light in $3{\sim}5\;{\mu}m$ wavelength range on InSb wafer with p-i-n structure grown by MOCVD. Silicon dioxide($SiO_2$) insulating films for the junction interface and surface of photodiode were prepared using RPCVD because InSb has low melting point and evaporation temperature. After formation of In ohmic contacts by thermal evaporation, the electrical properties of the photodiode were characterized in dark state at 77K. A product of zero-bias resistance and area($R_0A$) showed $1.56{\times}10^6\;{\Omega}{\cdot}cm^2$ that satisfied BLIP(background limited infrared photodetector) condition. When the photodiode was tested under infrared light, the normalized detectivity of about $10^{11}\;cm{\cdot}Hz^{1/2}{\cdot}W^{-1}$ was obtained. we successfully fabricated a unit cell with InSb IR array with good quantum efficiency and high detectivity.

  • PDF

Study of changes in the kinetic parameters of corrosion on the macrocell current induced by the repair of reinforced concrete structures - Results of numerical simulation

  • Mostafa Haghtalab;Vahed Ghiasi;Aliakbar Shirzadi Javid
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.287-302
    • /
    • 2023
  • Corrosion of reinforcing bars in reinforced concrete structures due to chloride attack in environments containing chloride ions is one of the most important factors in the destruction of concrete structures. According to the abundant reports that the corrosion rate around the repair area has increased due to the macro-cell current known as the incipient anode, it is necessary to understand the effective parameters. The main objective of this paper is to investigate the effect of the kinetic parameters of corrosion including the cathodic Tafel slope, exchange current density, and equilibrium potential in repair materials on the total corrosion rate and maximum corrosion rate in the patch repair system. With the numerical simulation of the patch repair system and concerning the effect of parameters such as electromotive force (substrate concrete activity level), length of repair area, and resistivity of substrate and repair concrete, and with constant other parameters, the sensitivity of the macro-cell current caused by changes in the kinetic parameters of corrosion of the repairing materials has been investigated. The results show that the maximum effect on the macro-cell current values occurred with the change of cathodic Tafel slope, and the effect change of exchange current density and the equilibrium potential is almost the same. In the low repair extant and low resistivity of the repairing materials, with the increase in the electromotive force (degree of substrate concrete activity) of the patch repair system, the sensitivity of the total corrosion current reduces with the reduction in the cathode Tafel slope. The overall corrosion current will be very sensitive to changes in the kinetic parameters of corrosion. The change in the cathodic Tafel slope from 0.16 to 0.12 V/dec and in 300 mV the electromotive force will translate into an increase of 200% of the total corrosion current. While the percentage of this change in currency density and equilibrium potential is 53 and 43 percent, respectively. Moreover, by increasing the electro-motive force, the sensitivity of the total corrosion current decreases or becomes constant. The maximum corrosion does not change significantly based on the modification of the corrosion kinetic parameters and the modification will not affect the maximum corrosion in the repair system. Given that the macro-cell current in addition to the repair geometry is influenced by the sections of reactions of cathodic, anodic, and ohmic drop in repair and base concrete materials, in different parameters depending on the dominance of each section, the sensitivity of the total current and maximum corrosion in each scenario will be different.