• Title/Summary/Keyword: offshore wind power

Search Result 330, Processing Time 0.032 seconds

Economic Assessments of LFAC and HVDC Transmissions for Large Offshore Wind Farms

  • Park, Taesik;Kwak, Nohong;Moon, Chaeju;Cha, Seungtae;Kwon, Seongchul
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2015
  • Offshore wind farms extend a distance from an onshore grid to increase their generating power, but long distance and high power transmissions raise a lot of cost challenges. LFAC (Low Frequency AC) transmission is a new promising technology in high power and low cost power transmission fields against HVDC (High Voltage DC) and HVAC (High Voltage AC) transmissions. This paper presents an economic comparison of LFAC and HVDC transmissions for large offshore wind farms. The economic assessments of two different transmission technologies are analyzed and compared in terms of wind farm capacities (600 MW and 900 MW) and distances (from 25 km to 100 km) from the onshore grid. Based on this comparison, the economic feasibility of LFAC is verified as a most economical solution for remote offshore wind farms.

Installation of Meteorological Mast for the Test Bed of Offshore Wind Power (서해 100MW 해상풍력 실증단지 기상타워 구축사례)

  • Ryu, Moosung;Kang, Keumseok;Kim, Jiyoung;Lee, Junshin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.55.2-55.2
    • /
    • 2011
  • The final site of offshore wind power plant should be decided by comprehensive examination of various conditions such as wind resource, sea depth, geology, grid connection, social circumstance and environmental issue. Wind condition is typically regarded as the most important factor because wind energy increases in proportion to wind velocity and it directly relates to the amount of power output, efficiency of power plant and profitability. Advanced countries in the offshore wind power sector such as Denmark, UK and Germany, they are analyzing wind resource accurately by installing the meteorological mast in the ocean in order to get the optimal type of wind turbine and maximum generation efficiency. Also, it is made much of designing offshore power plant on the basis of actual measurement by met-mast and those wind farms have a chance to get the loan with reduced interest rate in project financing. In Korea, the HEMOSU-1 is installed in the ocean around Wido island to analyze wind resource of test bed of 100MW offshore wind power on october last year. This paper deals with the design and construction procedure of the first met-mast in Korea and also shows the site characteristics of test bed. Therefore, this paper will give useful information to local governments and private business sector who are trying to construct offshore wind farm and it can also be a good reference for the following projects of meteorological mast in near future.

  • PDF

A Study on the Design of Database to Improve the Capability of Managing Offshore Wind Power Plant (해상풍력 풍력시스템의 관리능력 향상을 위한 데이터베이스 설계에 관한 연구)

  • Kim, Do-Hyung;Kim, Chang-Suk;Kyong, Nam-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.65-70
    • /
    • 2010
  • As for the present wind power industry, most of the computerization for monitoring and control is based on the traditional development methodology, but it is necessary to improve SCADA system since it has a phenomenon of backlog accumulation in the applicable aspect of back-data as well as in the operational aspect in the future. Especially for a system like offshore wind power where a superintendent cannot reside, it is desirable to operate a remote control system. Therefore, it is essential to establish a monitoring system with appropriate control and monitoring inevitably premised on the integrity and independence of data. As a result, a study was carried out on the modeling of offshore wind power data-centered database. In this paper, a logical data modeling method was proposed and designed to establish the database of offshore wind power. In order for designing the logical data modeling of an offshore wind power system, this study carried out an analysis of design elements for the database of offshore wind power and described considerations and problems as well. Through a comparative analysis of the final database of the newly-designed off-shore wind power system against the existing SCADA System, this study proposed a new direction to bring about progress toward a smart wind power system, showing a possibility of a service-oriented smart wind power system, such as future prediction, hindrance-cause examination and fault analyses, through the database integrating various control signals, geographical information and data about surrounding environments.

Numerical Simulation of Environmental Change in South West Offshore Wind Farm Using MIKE

  • Kim, Minsuek;Kim, Jiyoung;Jeon, In-sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.145-152
    • /
    • 2021
  • Environmental change due to construction of large offshore wind farm has been a debate for a long time in Korea. There are various data acquired on hydrodynamics around this area before and during construction of offshore wind farm but no data during operation could be made due to delayed schedule. In this study, environmental change such as bathymetry change and scouring was forecasted using MIKE, numerical hydrodynamics model, and its results were validated using the observation data before and during construction.

A Study on Offshore Wind Farm Development through a Review of Floating Offshore Wind Power Project Cases in Norway (부유식 해상풍력 개발사례를 통한 해상풍력단지 조성 방안 연구 - 노르웨이 사례를 중심으로)

  • Taeyun Kim;Jun-Ho Maeng
    • Journal of Wind Energy
    • /
    • v.14 no.2
    • /
    • pp.14-25
    • /
    • 2023
  • This study focuses on proposing measures for the reasonable development of offshore wind farms using the case of Norway, which was the first nation in the world to build a floating offshore wind farm of 80 MW or more. Norwegian authorities conducted a strategic environment assessment in 2012 to select offshore wind farm sites, discovered 15 potential sites, and finally decided on two designated sites in 2020. Based on various survey data such as seabirds, marine environment, and fishing activities, scientific-based spatial analysis was conducted to select additional offshore wind farm sites in line with future development plans. In addition, a government-led steering committee and advisory group have established marine spatial plans since 2002. Therefore, it will be possible to listen to and coordinate the opinions of stakeholders by using the steering committee and advisory group for offshore wind power development. By examining the case of Norway, we suggest the following policy points that can achieve carbon neutrality and develop sustainable offshore wind farms: 1. Establish a government-led steering committee and advisory group that can select potential sites for offshore wind farms by coordinating the opinions of stakeholders 2. Induce efficient and sequential offshore wind farm development by using various survey data and scientific-based spatial analysis.

Consideration on Pre-Feasibility Studies for Large-scale Offshore Wind Farms Led by Local Governments, Focusing on the Case of Shinan-gun (지자체 주도 대규모 해상풍력단지 사전 타당성 조사에 대한 고찰, 신안군 사례 중심으로)

  • Min Cheol Park;Ji Hoon Park;Gi Yun Lee;Chang Min Lee;Gwang Hyeok Yu;Hee Woong Jang;Hyun Sig Park
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.65-70
    • /
    • 2024
  • The major challenge in promoting large-scale offshore wind power projects is securing local acceptance. Several recent studies have emphasized the crucial role of local governments in addressing this problem. However, local governments have difficulty in achieving clear results because of the lack of expertise and manpower in offshore wind power projects, making thempassive in promoting these initiatives. In this context, we briefly introduce the case of Shinan-gun, which recently successfully conducted a pre-feasibility study on a large-scale offshore wind power complex led by the local government.

Regulatory Pathways for Siting and Permitting Offshore Wind Facilities (해상풍력발전시설의 부지 및 허가에 관한 승인절차)

  • Yang, Hyoung-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • According to the increasement of demand for energy around globe, the concern degree of advanced countries for ocean energy including offshore wind power becomes excited. In domestic case, the government set up a goal that jumps up to the third ranked powerful nation of offshore wind in the world until 2020 and announced "The plan for 2.5-gigawatt wind farm off the south-west coast by 2019". Also the legal basis was created in order to support development of offshore wind power as 'A law on development, use, supply and promotion for New energy and renewable energy' was established by law. However to promote offshore wind power projects, there are much difficulties that developers should be applied by permitting use of public water surface and regulations of several domestic public institution. Therefore in this paper, we suggested an alternative to promote efficient offshore wind power projects by comparative analysis between domestic and foreign on regulatory pathways for siting and permitting offshore wind facilities.

New Design for Jacket-type Offshore Wind Turbine Support Structure for Southwest Coast of South Korea

  • Choi, Byeong-Ryoel;Jo, Hyo-Jae;Choi, Han-Sik;Ha, Sung-Yeol;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.184-192
    • /
    • 2017
  • The Korea Offshore Wind Power (KWOP) cooperation is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW along the southwestern coast by 2019. Hitherto, various structural types of support structures for offshore wind turbines have been being proposed, but these structures have lacked economic analysis studies. Therefore, their economical superiority to existing types has been difficult to guarantee. An offshore structure with economic efficiency will have a minimum amount of mobilizing equipment and short offshore construction period because of the application of rapid installation methods. Thus, the development of a new support structure with economic efficiency is generally considered to be necessary. Accordingly, this paper proposes a newly developed and more economical jacket type for the offshore support structure. This study confirmed its structural safety and performance by conducting a structural analysis and eigenvalue analysis. The manufacturing and installation costs were then estimated. As a result, the new jacket type of offshore support structure proposed in this study significantly reduced the manufacturing and installation costs. Therefore, it is expected that the proposed jacket will contribute to reducing construction expenses for new wind power farms and invigorating wind power farm businesses.

Long-Term Wind Resource Mapping of Korean West-South Offshore for the 2.5 GW Offshore Wind Power Project

  • Kim, Hyun-Goo;Jang, Moon-Seok;Ko, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.22 no.10
    • /
    • pp.1305-1316
    • /
    • 2013
  • A long-term wind resource map was made to provide the key design data for the 2.5 GW Korean West-South Offshore Wind Project, and its reliability was validated. A one-way dynamic downscaling of the MERRA reanalysis meteorological data of the Yeongwang-Gochang offshore was carried out using WindSim, a Computational Fluid Dynamics based wind resource mapping software, to establish a 33-year time series wind resource map of 100 m x 100 m spatial resolution and 1-hour interval temporal resolution from 1979 to 2012. The simulated wind resource map was validated by comparison with wind measurement data from the HeMOSU offshore meteorological tower, the Wangdeungdo Island meteorological tower, and the Gochang transmission tower on the nearby coastline, and the uncertainty due to long-term variability was analyzed. The long-term variability of the wind power was investigated in inter-annual, monthly, and daily units while the short-term variability was examined as the pattern of the coefficient of variation in hourly units. The results showed that the inter-annual variability had a maximum wind index variance of 22.3% while the short-term variability, i.e., the annual standard deviation of the hourly average wind power, was $0.041{\pm}0.001$, indicating steady variability.

Assessment of Possible Resources and Selection of Preparatory Sites for Offshore Wind Farm around Korean Peninsula (국내 해역의 해상풍력 가능자원 평가 및 예비부지 선정)

  • Kim, Ji-Young;Kang, Keum-Seok;Oh, Ki-Yong;Lee, Jun-Shin;Ryu, Moo-Sung
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.39-48
    • /
    • 2009
  • Recently, developing the offshore wind farm in Korean peninsula is widely understood as essential to achieve the national target for the renewable energy. As part of national plan, KEPRI (Korea electric power research institute) is performing the front running project for the offshore wind farm development that is dedicated to investigate the possible resources based on the economy considering current technological status. It also includes the selection of the first sea area among candidates and optimal design of the offshore wind farm, etc. In this paper the interim results of the project are summarized that the possible capacity for the offshore wind farm can be estimated conservatively around 18 GW regarding the wind power class, sea depth and social constraint. The five western sea areas near Taean, Gunsan, Gochang, Yeonggwang, Sinan were chosen for the candidating sites. Detailed analysis for these sites will be conducted to finalize the first-going offshore wind farm in Korea.

  • PDF