• 제목/요약/키워드: offshore structures

검색결과 834건 처리시간 0.029초

고에너지흡수 신소재 적용 해양플랜트 파형 방폭벽의 폭발 저항 성능 (Explosion Resistance Performance of Corrugated Blast Walls for Offshore Structures made of High Energy Absorbing Materials)

  • 노명현;박규식;이재익
    • 복합신소재구조학회 논문집
    • /
    • 제6권1호
    • /
    • pp.38-44
    • /
    • 2015
  • In this paper, a finite element dynamic simulation study was performed to gain an insight about the blast wall test details for the offshore structures. The simulation was verified using qualitative and quantitative comparisons for different materials. Based on in-depth examination of blast simulation recordings, dynamic behaviors occurred in the blast wall against the explosion are determined. Subsequent simulation results present that the blast wall made of high energy absorbing high manganese steel performs much better in the shock absorption. In this paper, the existing finite element shock analysis using the LS-DYNA program is further extended to study the blast wave response of the corrugated blast wall made of the high manganese steel considering strain rate effects. The numerical results for various parameters are verified by comparing different material models with dynamic effects occurred in the blast wall from the explosive simulation.

인공신경망을 이용한 해양구조물의 지진시 진동제어 (Seismic control of offshore platform using artificial neural network)

  • 김동현;김주명;심재설
    • 한국강구조학회 논문집
    • /
    • 제21권2호
    • /
    • pp.175-181
    • /
    • 2009
  • 해저지진 시 해양구조물의 진동제어를 위한 인공지능 능동제어기법을 제안하였다. 해양구조물의 동적거동은 유체-구조물 상호작용에 의한 비선형 거동을 고려하였으며 인공신경망의 학습기법을 이용하여 해양구조물의 진동제어기를 구현하였다. 수치해석결과 비제어시와 수동제어 그리고 본 연구에서 개발한 인공신경망 제어기법에 의한 성능을 비교하였다. 진동제어 성능은 능동제어가 가장 우수하였으며 신경망 제어기법은 비선형거동을 하는 해양구조물에 적용하여도 그 성능이 매우 뛰어남을 확인하였다.

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • 제9권4호
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.

이안 구조물 건설에 따른 해안선의 변화와 수치계산 (Shoreline Changes due to the Construction of Offshore Structure and its Numerical Calculation)

  • 신승호
    • 한국항만학회지
    • /
    • 제15권1호
    • /
    • pp.47-56
    • /
    • 2001
  • A numerical model for practical use based on the 1-line theory is presented to simulate shoreline changes due to construction of offshore structures. The shoreline change model calculates the longshore sediment transport rate using breaking waves. Before the shoreline change model execution, a wave model, adopting the modified Boussinesq equation including the breaking parameters and bottom friction term, was used to provide the longshore distribution of the breaking waves. The contents of present model are outlined first. Then to examine the characteristics of this model, the effects of the parameters contained in this model are clarified through the calculations of shoreline changes for simple cases. Finally, as the guides for practical application of this model, several comments are made on the parameters used in the model, such as transport parameter, average beach slope, breaking height variation alongshore, depth of closure, etc. with the presentation of typical examples of 3-dimensional movable bed experimental results for application of this model. Here, beach change behind the offshore structures is represented by the movement of the shoreline position. Analysis gives that the transport parameters should be taken as site specific parameters in terms of time scale for the shoreline change and adjusted to achieve the best agreement between the calculated and the observed near the structures.

  • PDF

시스템 다이내믹스 기반 해양구조물 분리시스템의 설계검증 방법에 관한 연구 (Design Verification Method of Offshore Separation Systems Based on System Dynamics)

  • 황존규;고재용;이동건;박본영
    • 해양환경안전학회지
    • /
    • 제26권6호
    • /
    • pp.715-722
    • /
    • 2020
  • 본 연구는 시스템 다이내믹스를 기반으로 해양구조물 분리시스템(Separation system)의 설계검증 방법을 제안하였다. 해양구조물 분리시스템은 부가가치 측면에서 EPC 프로젝트의 성공 여부를 결정할 수 있는 상부구조(Topsides)의 가장 중요한 시스템 중 하나이다. 그럼에도 불구하고, 설계검증에 대한 지금까지의 실태는 설계 작업의 프로세스 진행이나 도면작성 및 제공에 국한되어 있어 기본설계 단계에서 설계검증의 미흡으로 인하여 계약 후 잦은 설계변경에 의한 기업손실이 발생되어 왔다. 이러한 맥락에서 본 연구의 목적은 해양구조물의 전체 프로젝트 수행 기간에 성공적인 사업수행을 도모하고자 설계검증 모델을 구축하여 적용하도록 하였다. 제안된 설계검증 방법은 상세 설계의 효과적인 실행뿐만 아니라 초기설계 단계에서 기술적 오류나 불일치 사항을 미리 찾아냄으로써 해양구조물의 엔지니어링, 조달 및 건조에 대한 경쟁력을 향상시키는데 기여 할 것으로 예상한다. 본 연구에서는 먼저 건조한 실적선 자료를 바탕으로 설계검증을 수행하여 FPSO 분리시스템에 적용하고 ISO 15288 국제 표준을 준수하였다. 결과적으로, 제안된 설계검증 방법이 해양구조물의 FEED 검증 프로세스에 적용될 수 있으며, 향후 해양 프로젝트의 성공적인 수행에 의한 이익창출을 도모할 수 있을 것이다. 또한, 해양구조물 건조 시 설계변경에 의한 막대한 손실을 최소화 할 수 있을 것으로 기대한다.

Nonlinear response of fixed jacket offshore platform under structural and wave loads

  • Abdel Raheem, Shehata E.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.111-126
    • /
    • 2013
  • The structural design requirements of an offshore platform subjected to wave induced forces and moments in the jacket can play a major role in the design of the offshore structures. For an economic and reliable design; good estimation of wave loadings are essential. A nonlinear response analysis of a fixed offshore platform under structural and wave loading is presented, the structure is discretized using the finite element method, wave plus current kinematics (velocity and acceleration fields) are generated using 5th order Stokes wave theory, the wave force acting on the member is calculated using Morison's equation. Hydrodynamic loading on horizontal and vertical tubular members and the dynamic response of fixed offshore structure together with the distribution of displacement, axial force and bending moment along the leg are investigated for regular and extreme conditions, where the structure should keep production capability in conditions of the 1-yr return period wave and must be able to survive the 100-yr return period storm conditions. The result of the study shows that the nonlinear response investigation is quite crucial for safe design and operation of offshore platform.

A numerical and experimental approach for optimal structural section design of offshore aluminium helidecks

  • Seo, Jung Kwan;Park, Dae Kyeom;Jo, Sung Woo;Park, Joo Shin;Koo, Jeong Bon;Ha, Yeong Su;Jang, Ki Bok
    • Structural Engineering and Mechanics
    • /
    • 제59권6호
    • /
    • pp.993-1017
    • /
    • 2016
  • Helicopters are essential for supporting offshore oil and gas activities around the world. To ensure accessibility for helicopters, helideck structures must satisfy the safety requirements associated with various environmental and accidental loads. Recently, offshore helideck structures have used aluminium because of its light weight, low maintenance requirements, cost effectiveness and easy installation. However, section designs of aluminum pancakes tend to modify and/or change from the steel pancakes. Therefore, it is necessary to optimize section design and evaluate the safety requirements for aluminium helideck. In this study, a design procedure was developed based on section optimization techniques with experimental studies, industrial regulations and nonlinear finite element analyses. To validate and verify the procedure, a new aluminium section was developed and compared strength capacity with the existing helideck section profiles.

세굴을 고려한 해상풍력터빈 지지구조물 위험도 평가 (Risk Assessment of Offshore Wind Turbine Support Structures Considering Scouring)

  • 김영진;이대용;김동현
    • 한국해안·해양공학회논문집
    • /
    • 제32권6호
    • /
    • pp.524-530
    • /
    • 2020
  • 세굴에 의한 해상풍력터빈 지지구조물의 위험도 평가기법을 제안하였다. 제안방법은 세굴깊이별 발생확률과 세굴깊이에 따른 취약도를 이용한 위험도 평가방법이며 지진위험도 평가기법을 변형한 것이다. 세굴깊이의 확률분포는 유의파고, 유의 주기, 조류속 등 해양 환경조건을 고려하기 적합한 경험식을 이용해 산정했으며, 해상풍력터빈 지지구조물의 동적응답을 이용하여 세굴취약도 곡선을 산정하였다. 세굴깊이별 발생확률과 세굴에 의한 구조물의 세굴취약도 곡선을 결합하여 세굴위험도를 분석하였다.

해상크레인을 이용한 다양한 해저 장비의 설치 작업 시 상하운동응답특성에 관한 모형 시험 연구 (Experimental Study of Heave Responses of Subsea Equipment during Installation Operation Using Offshore Crane)

  • 최영명;남보우;김남우;박인보;홍사영;김종욱
    • 한국해양공학회지
    • /
    • 제30권2호
    • /
    • pp.75-83
    • /
    • 2016
  • An experimental study on a subsea installation using an offshore crane was conducted. Concrete blocks, suction piles, and manifolds were considered in this study. Free decay tests were conducted to investigate the fluid characteristics of the subsea structures. The added masses of the structures were estimated. The motion response amplitudes of the subsea structures were compared for different structures and water depths. In addition, the dynamic tension transfer function of the crane wire was investigated. The root mean square values of the heave motion and the dynamic amplification factor of the wire tension were investigated in irregular waves.

Natural frequency of bottom-fixed offshore wind turbines considering pile-soil-interaction with material uncertainties and scouring depth

  • Yi, Jin-Hak;Kim, Sun-Bin;Yoon, Gil-Lim;Andersen, Lars Vabbersgaard
    • Wind and Structures
    • /
    • 제21권6호
    • /
    • pp.625-639
    • /
    • 2015
  • Monopiles have been most widely used for supporting offshore wind turbines (OWTs) in shallow water areas. However, multi-member lattice-type structures such as jackets and tripods are also considered good alternatives to monopile foundations for relatively deep water areas with depth ranging from 25-50 m owing to their technical and economic feasibility. Moreover, jacket structures have been popular in the oil and gas industry for a long time. However, several unsolved technical issues still persist in the utilization of multi-member lattice-type supporting structures for OWTs; these problems include pile-soil-interaction (PSI) effects, realization of dynamically stable designs to avoid resonances, and quick and safe installation in remote areas. In this study, the effects of PSI on the dynamic properties of bottom-fixed OWTs, including monopile-, tripod- and jacket-supported OWTs, were investigated intensively. The tower and substructure were modeled using conventional beam elements with added mass, and pile foundations were modeled with beam and nonlinear spring elements. The effects of PSI on the dynamic properties of the structure were evaluated using Monte Carlo simulation considering the load amplitude, scouring depth, and the uncertainties in soil properties.