• 제목/요약/키워드: offshore jacket structure

검색결과 72건 처리시간 0.026초

해상 풍력 발전 Jacket 지지구조물의 X-joint 응력 집중 현상 (X-joint stress concentration of offshore wind turbine jacket support structures)

  • 이주상;박현철;;이종선;백재하
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.39.1-39.1
    • /
    • 2011
  • Due to less turbulence and no land limitation, offshore wind energy gets more attention than onshore. Jacket structure is regarded as a suitable solution for the water depth ranging from 30 to 80 meters. In general, joint stress concentration of jacket support structures affects their fatigue life. Nowadays, most jacket structures for offshore wind turbines have tubular X-joint between legs. In this paper, a study on X-joint stress concentration of offshore wind turbine jacket structure is performed by using 50m water depth model. Stress of X-joint on offshore environmental conditions are discussed.

  • PDF

해양 자켓구조물 진수 영향인자에 대한 고찰 (Influential Parameters on Offshore Jacket Structure Launching)

  • 조철희;김경수;김재환;이수훈
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.141-147
    • /
    • 2001
  • The launching process is one of the most critical operations for large structure in offshore installation. Since as the size increases it limits the availability of offshore crane facilities, the large jacket structures are often installed by launching. As the structure approaches to tilt beam, it reaches critical load, and there are parameters to affect on launching procedure. The major influential parameters are trim, draft of barge, center of gravity, center of buoyancy and reserved buoyancy of jacket. As increasing of trim and draft, structural loads tend to decrease. The trim is found to be more contributing than draft on structural loads. Therefore the trim should be increased so as to decrease structural loads and to avoid stalling of structure and submergence of stern. During the launching process, the distance between jacket and seabed should be investigated which differs from the amount of reserved buoyancy and launching condition of barge. In this paper the effects of parameters on launching process are numerically investigated.

  • PDF

New Design for Jacket-type Offshore Wind Turbine Support Structure for Southwest Coast of South Korea

  • Choi, Byeong-Ryoel;Jo, Hyo-Jae;Choi, Han-Sik;Ha, Sung-Yeol;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.184-192
    • /
    • 2017
  • The Korea Offshore Wind Power (KWOP) cooperation is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW along the southwestern coast by 2019. Hitherto, various structural types of support structures for offshore wind turbines have been being proposed, but these structures have lacked economic analysis studies. Therefore, their economical superiority to existing types has been difficult to guarantee. An offshore structure with economic efficiency will have a minimum amount of mobilizing equipment and short offshore construction period because of the application of rapid installation methods. Thus, the development of a new support structure with economic efficiency is generally considered to be necessary. Accordingly, this paper proposes a newly developed and more economical jacket type for the offshore support structure. This study confirmed its structural safety and performance by conducting a structural analysis and eigenvalue analysis. The manufacturing and installation costs were then estimated. As a result, the new jacket type of offshore support structure proposed in this study significantly reduced the manufacturing and installation costs. Therefore, it is expected that the proposed jacket will contribute to reducing construction expenses for new wind power farms and invigorating wind power farm businesses.

A Study on the Application of Skirt Plates on Jacket Support Structures of Offshore Wind Turbines

  • Choi, Byeong-Ryoel;Choi, Han-Sik;Jo, Hyo-Jae;Lee, Sang-Hyep;Park, Young-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권2호
    • /
    • pp.47-52
    • /
    • 2018
  • The Korea Offshore Wind Power (KOWP) is planning to construct offshore wind energy farms with an overall rated power of 2.5 GW in the south-western coast of the country until 2019. Various types of support structures for offshore wind turbines have been proposed in the past. Nevertheless, in South Korea, jacket structures have in general, been applied as support structures for offshore wind turbines owing to the many accumulated experiences and know-how regarding this kind of support structure. The choice of offshore structure is mainly influenced by site conditions such as seabed soil type and sea environment during installation. In installing jacket sets on the seabed, the mudmat is necessary to maintain the equilibrium of the jacket without the aid of additional devices. Hence, this study proposes the installation of skirt plates underneath the bottom frame of jackets in order to improve the installation stability of jacket structures under rougher sea conditions. To confirm the effect of skirt plates, installation stability analyses considering overturning, sliding and bearing capacity have been performed. From the results, it is shown that jacket structures with skirt plates can contribute to improving the sliding stability of the structures of new wind power farms, while providing economic benefits.

Dynamic analysis of an offshore jacket platform with a tuned mass damper under the seismic and ice loads

  • Sharma, R.K.;Domala, V.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • 제9권4호
    • /
    • pp.369-390
    • /
    • 2019
  • Herein, we present numerical simulation based model to study the use of a 'Tuned Mass Damper (TMD)' - particularly spring mass systems - to control the displacements at the deck level under seismic and ice loads for an offshore jacket structure. Jacket is a fixed structure and seismic loads can cause it to vibrate in the horizontal directions. These motions can disintegrate the structure and lead to potential failures causing extensive damage including environmental hazards and risking the lives of workers on the jacket. Hence, it is important to control the motion of jacket because of earthquake and ice loads. We analyze an offshore jacket platform with a tuned mass damper under the earthquake and ice loads and explore different locations to place the TMD. Through, selected parametric variations a suitable location for the placement of TMD for the jacket structure is arrived and this implies the design applicability of the present research. The ANSYS*TM mechanical APDL software has been used for the numerical modeling and analysis of the jacket structure. The dynamic response is obtained under dynamic seismic and ice loadings, and the model is attached with a TMD. Parameters of the TMD are studied based on the 'Principle of Absorption (PoA)' to reduce the displacement of the deck level in the jacket structure. Finally, in our results, the proper mass ratio and damping ratios are obtained for various earthquake and ice loads.

Effects of floating wave barriers on wave-induced forces exerted to offshore-jacket structure

  • Osgouei, Arash Dalili;Poursorkhabi, Ramin Vafaei;Hosseini, Hamed;Qader, Diyar N.;Maleki, Ahmad;Ahmadi, Hamid
    • Structural Engineering and Mechanics
    • /
    • 제83권1호
    • /
    • pp.53-66
    • /
    • 2022
  • The main objective of the present research was investigating the effects of a floating wave barrier installed in front of an offshore jacket structure on the wave height, base shear, and overturning moment. A jacket model with the height of 4.55 m was fabricated and tested in the 402 m-long wave flume of NIMALA marine laboratory. The jacket was tested at the water depth of 4 m subjected to the random waves with a JONSWAP energy spectrum. Three input wave heights were chosen for the tests: 20 cm, 23 cm, and 28 cm. Two different cross sections with the same area were selected for the wave barrier: square and rhombus. Results showed that the average decrease in the jacket's base shear due to the presence of a floating wave barrier with square and rhombus cross section was 24.67% and 34.29%, respectively. The use of wave barriers with square and rhombus cross sections also resulted in 19.78% and 33.11% decrease in the jacket's overturning moment, respectively. Hence, it can be concluded that a floating wave barrier can significantly reduce the base shear and overturning moment in an offshore jacket structure; and a rhombus cross section is more effective than an equivalent square section.

Seismic response evaluation of fixed jacket-type offshore structures by random vibration analysis

  • Abdel Raheem, Shehata E.;Abdel Aal, Elsayed M.;AbdelShafy, Aly G.A.;Fahmy, Mohamed F.M.
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.209-219
    • /
    • 2022
  • Offshore platforms in seismically active areas must be designed to survive in the face of intense earthquakes without a global structural collapse. This paper scrutinizes the seismic performance of a newly designed and established jacket type offshore platform situated in the entrance of the Gulf of Suez region based on the API-RP2A normalized response spectra during seismic events. A nonlinear finite element model of a typical jacket type offshore platform is constructed taking into consideration the effect of structure-soil-interaction. Soil properties at the site were manipulated to generate the pile lateral soil properties in the form of load deflection curves, based on API-RP2A recommendations. Dynamic characteristics of the offshore platform, the response function, output power spectral density and transfer functions for different elements of the platform are discussed. The joints deflection and acceleration responses demands are presented. It is generally concluded that consideration of the interaction between structure, piles and soil leads to higher deflections and less stresses in platform elements due to soil elasticity, nonlinearity, and damping and leads to a more realistic platform design. The earthquake-based analysis for offshore platform structure is essential for the safe design and operation of offshore platforms.

Nonlinear response of fixed jacket offshore platform under structural and wave loads

  • Abdel Raheem, Shehata E.
    • Coupled systems mechanics
    • /
    • 제2권1호
    • /
    • pp.111-126
    • /
    • 2013
  • The structural design requirements of an offshore platform subjected to wave induced forces and moments in the jacket can play a major role in the design of the offshore structures. For an economic and reliable design; good estimation of wave loadings are essential. A nonlinear response analysis of a fixed offshore platform under structural and wave loading is presented, the structure is discretized using the finite element method, wave plus current kinematics (velocity and acceleration fields) are generated using 5th order Stokes wave theory, the wave force acting on the member is calculated using Morison's equation. Hydrodynamic loading on horizontal and vertical tubular members and the dynamic response of fixed offshore structure together with the distribution of displacement, axial force and bending moment along the leg are investigated for regular and extreme conditions, where the structure should keep production capability in conditions of the 1-yr return period wave and must be able to survive the 100-yr return period storm conditions. The result of the study shows that the nonlinear response investigation is quite crucial for safe design and operation of offshore platform.

대형 해양 자켓의 직립 안정성 고찰 (An Upending Stability for Offshore Jacket)

  • 조철희;김병환;정현
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.203-207
    • /
    • 2003
  • As the upending is one of the critical steps in the installation of offshore structure, datail procedure of upending operation is studied in the paper. For larger offshore structure installation, launching method is often applied. However after launching, the upending process is to be followed. To ensure successful upending operation, datail process is analysed considering various factors affecting on the operation including reserved buoyancy, free flotation position, seabed clearance, ballast and hook load. To investigate the influence of each factor on the procedure, twelve numerical jacket models with various dimensions are simulated and studied. From the study, it is revealed that the increase of buoyance and decrease of self weight generate a large seabed clearance. The law seabed clearance during flooding creates higher hook load and height. The paper also introduces a guideline for the related structure design and construction with the effects of contribution factors in the upending operation.

  • PDF

Benchmark test of large scale offshore wind turbine with jacket foundation

  • 백재하;박현철;;이주상;이종선
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.37.2-37.2
    • /
    • 2011
  • Nowadays, offshore wind energy experiences a rapid development because of its wind condition and no noise impact problem. Different from Europe, offshore wind is just started in Asia. More work and research are needed in Korea. In this work, a three-bladed upwind variable speed pitch controlled 5MW wind turbine on a jacket support structure is used. During the simulation, several design load cases are investigated in two different fully coupled aero-hydro-servo-elastic codes. Some critical loads on the foundation are compared and analyzed.

  • PDF