• Title/Summary/Keyword: offshore environment

Search Result 583, Processing Time 0.027 seconds

A Study on the Environmental Impact of Offshore Wind Farms Through Monitoring Case in Overseas Country (W국외 모니터링 사례를 통한 해상풍력발전의 환경적 영향 고찰)

  • Maeng, Jun-Ho;Cho, Beom-Jun;Lim, O-Joung;Seo, Jane
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.4
    • /
    • pp.276-289
    • /
    • 2013
  • In developing offshore wind farms, many environmental issues arise because of the concentration on supply demand and economic logic. Accordingly, community conflict is induced. Especially, recent studies regarding the capacity and location of offshore wind development have been conducted considering wind states and ocean conditions, etc. of coastal seas in Republic of Korea. Nevertheless, studies on the impact of marine environments and ecosystems are very limited so far. Environmental monitoring that follows development projects has been actively done in the offshore wind farms in many developed European countries. In contrast, there is no domestic monitoring data regarding environmental impacts caused by installing and operating offshore wind power. Therefore, the environmental impacts under construction and operation phases as well as the guidelines in the stage of environmental impact assessment suited for domestic coastal seas are well presented in this study by analyzing monitoring cases and references of overseas offshore wind farm. For this reason, this research is ultimately aimed at minimizing the environmental impact in offshore wind farm development and thus simplify administrative procedures in Korea.

The Study for Evaluation of thermal comfort in office on offshore (해양플랜트 사무공간의 공조 쾌적성 평가에 관한 연구)

  • Lim, Hongseok;Kim, Panjung
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.67-72
    • /
    • 2017
  • This paper presents on the evaluation of thermal comfort in office on offshore. In living quarter of offshore, strict air conditioning performance is required to office on offshore and displacement ventilation is applied to office space which rooms are required to confirm the thermal environment. The computational fluid dynamics (CFD) is performed to calculate the temperature, air velocity in office and thermal comfort such as PPM & PPD is evaluated by the CFD result.

  • PDF

A Study on Traffic Safety Assessments for Fishing Vessels Near the Southwest Sea Offshore Wind Farm

  • Yoo, Sang-Lok;Jeong, Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.3
    • /
    • pp.231-241
    • /
    • 2017
  • The purpose of this study was to analyze traffic safety assessments for fishing vessels near the southwest offshore wind farm. This study applied a collision model for safety assessment. It also involved a spatiotemporal analysis of vessels engaged in fishing to identify fishing hotspots around the offshore wind farm. This study used data from fishing vessel location transmission devices gathered over 1 year in 2014. As a result, in September, when the average number of vessels engaged in fishing is high, 62 ships were operating in fishing section 184-6 and 55 ships in section 184-6. In addition, in fishing sections 184-8 and 192-2, where an offshore wind farm was located, there were 55 and 38 ships operating, respectively. As the recovery period for a seaway near wind farm turbines is 55 years, it was determined that safety measures are required in order to reduce collision frequency while allowing fishing vessels to navigate through offshore wind farms. Meanwhile, the return period of Seaway B between the groups of generators considered was 184 years. A safety zone for offshore wind farms should be installed covering a distance of at least 0.3 NM from the boundary of turbines. Then, the collision return period was derived to be close to 100 years. Through this traffic safety assessment, it has been concluded that such measures would help prevent marine accidents.

Technical considerations for engineering of crane pedestal operated in North-Western Australia Offshore (North-Western Australia 해상에 운용되는 Offshore Crane Pedestal 설계)

  • Song, Jun-Ho;Kim, Yong-Woon;LEE, Kyung-Seok;Kim, Man-Soo
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.34-40
    • /
    • 2015
  • The design, procurement and fabrication of FPSO project ordered by Inpex Browse, Ltd. have been currently carried out by DSME(Daewoo Shipbuilding Marine and Engineering Co.). The unit will be installed and operated in the Ichthys field offshore of North-Western Australia and there are the particular design requirements to do with performance on the environment loads corresponding to max. 10,000 years return period wave. Also, the operational life of FPSO has to be over 40 years. With this background, this paper introduces the structural design procedure of crane pedestal foundation operated in north-western Australia offshore. The design of crane pedestal foundation structure is basically based on international design code (i.e. API Spec. 2C), Classification society's rule and project specifications. The design load cases are mainly divided into the crane normal operating conditions and crane stowed conditions according to environment conditions of the offshore with 1-year, 5-year, 10-year, 200-year and 10,000-year return period wave. This design experience for crane pedestal foundation operated in north-western Australia offshore will be useful to do engineering of other offshore crane structures.

  • PDF

Regulatory Pathways for Siting and Permitting Offshore Wind Facilities (해상풍력발전시설의 부지 및 허가에 관한 승인절차)

  • Yang, Hyoung-Seon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.71-77
    • /
    • 2014
  • According to the increasement of demand for energy around globe, the concern degree of advanced countries for ocean energy including offshore wind power becomes excited. In domestic case, the government set up a goal that jumps up to the third ranked powerful nation of offshore wind in the world until 2020 and announced "The plan for 2.5-gigawatt wind farm off the south-west coast by 2019". Also the legal basis was created in order to support development of offshore wind power as 'A law on development, use, supply and promotion for New energy and renewable energy' was established by law. However to promote offshore wind power projects, there are much difficulties that developers should be applied by permitting use of public water surface and regulations of several domestic public institution. Therefore in this paper, we suggested an alternative to promote efficient offshore wind power projects by comparative analysis between domestic and foreign on regulatory pathways for siting and permitting offshore wind facilities.

Fishermen's Perceptions and Considerations regarding the Coexistence of Fishing Activities within Offshore Wind Farms

  • Yu-Jeong Mun;Cho-Young Jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.3
    • /
    • pp.283-290
    • /
    • 2024
  • In this study, a survey on the coexistence of offshore wind farm and fishing activities in Gochang, Gunsan, and Buan's fishermen in the southwest sea of shore wind farm was carried out witn an aim of examining the factors that should be considered when coexisting. A questionnaire was composed after referring to domestic and foreign literature data on examples of coexistence. The questionnaire was issued through direct visits. Frequency analysis and cross-analysis were used for survey response results, and IBM SPSS Statistics ver. 26 was used for statistical processing. As a result of analyzing a total of 84 questionnaires, the perception of the coexistence of offshore wind and fishing activities was the same by 50.0% positive and negative, respectively. As a result of cross-analysis by region, significant differences were found (p <0.039). Gochang fishermen showed a high negative perception of the coexistence of offshore wind and fishing activities at 62.1%, with the main reason being that fishing resources are expected to decrease due to the influence of noise, vibration, and current generated from offshore wind farm facilities. In Gunsan, negative perception of coexistence was high at 57.7%. This was mainly attributed to the impossibility to operate in the offshore wind farm due to the nature of the fishery. On the contrary, in the case of Buan, 69.0% of the positive perception of coexistence was high 'because fishermen were dissatisfied with the current coexistence plan (policy)'. According to previous studies, 91.8% of domestic fishing methods show the possibility of fishing activities in offshore wind under caution, so it is concluded that research should be conducted to coexist with offshore wind and fishing activities as in foreign countries for smooth installation of offshore wind and continuous fishing activities.

A Study on Implications and Improvement Plans for the Developing Consultation Guidelines for Environmental Assessment of Offshore Wind Power Development Projects (해상풍력 개발사업의 환경성 평가 협의 지침 개발에 관한 시사점 및 개선안 연구)

  • Haemi, Lee;Junho, Maeng
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.449-464
    • /
    • 2022
  • This study reviewed the development process of the consultation guideline for the environmental assessment of offshore wind power. Based on this, implications and improvement plans for a future revision of the guidelines. Domestic and foreign case studies reviewed the consulting cases on domestic offshore wind power development projects, environmental location consulting cases, and guidelines related to overseas offshore wind power and analyzed location characteristics and significant environmental issues by project. Major environmental issues related to offshore wind power include birds, noise and vibration, marine animals and plants, marine physics, marine water quality and sediments, marine landscapes, and other auxiliary facilities installed on land. Implications and improvements for revising the consultation guidelines for evaluating offshore wind environments require data and clear guidelines at the central government level to determine areas where offshore wind projects can be located. In a situation where the importance of cumulative impact assessment is emphasized, guidelines for cumulative impact assessment methodologies for each item that reflect the domestic situation should be prepared for a cumulative impact assessment on offshore wind power environmental issues. In addition, when revising the consultation guidelines, empirical research cases should be reflected through the accumulation of environmental surveys and monitoring data of offshore wind farms by sea area.

A Study on the Problems and Improvement measures of Investigation of Fishing Damages Caused by Offshore Wind Power Development (해상풍력 발전사업에 따른 어업피해조사 문제점 및 개선방안에 대한 연구)

  • Youn-Suk Nam;Hyun-Gi Choo;Geo-Hyun Ryu
    • The Journal of Fisheries Business Administration
    • /
    • v.54 no.2
    • /
    • pp.91-107
    • /
    • 2023
  • Offshore wind power development has been promoted in countries around the world to cope with global warming. Despite its many advantages, offshore wind power affects the marine environment during construction and operation. As a result, the reduction of fishing areas, changes in the habitat of marine animals, damage to fishing gear, and impeding the safety of fishing activities are occurring. If the offshore wind power generation project is carried out, a fishing damage investigation is nescssary. There are only four fishing damage investigations related to offshore wind power, which are being conducted similarly to the existing fishing damage investigation related to offshore construction. Therefore, this study reviewed and analyzed the report on fisheries damage investigation related to offshore wind power conducted in Korea and suggested problems and improvement measures accordingly.

A Study on the Abnormal and Fault Reproduction Method for Smart Monitoring of Thrust Bearing in Wave Power Generation System (파력발전 시스템 쓰러스트 베어링의 스마트 모니터링을 위한 이상 및 고장 운용 재현 방법에 관한 연구)

  • Oh, Jaewon;Min, Cheonhong;Sung, Kiyoung;Kang, Kwangu;Noh, Hyon-Jeong;Kim, Taewook;Cho, Sugil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.5
    • /
    • pp.835-842
    • /
    • 2020
  • This paper considers a method of reproducing abnormal and fault operation for smart monitoring of thrust bearing used in wave power generation system. In order to develop smart monitoring technology, abnormal and failure data of actual equipment are required. However, it is impossible to artificially break down the actual equipment in operation due to safety and cost. To tackle this problem, a test bed that can secure data through reproduction of a faulty operating environment should be developed. Therefore, in this study, test bed that can reproduce each situation was developed and the operation result was analysis after identifying the situation to be reproduced through the failure factor analysis of the thrust bearing.

Offshore Process FEED(Front End Engineering Design) Method for Integrated Process Engineering (통합 프로세스 엔지니어링을 위한 해양 프로세스 기본 설계 방법론)

  • Hwang, Ji-Hyun;Roh, Myung-Il;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.265-277
    • /
    • 2010
  • In this study, an offshore process FEED(Front End Engineering Design) method is systematically established to perform integrated process engineering for topsides systems of LNG FPSO(Floating, Production, Storage, and Off-loading unit) based on the concepts and procedures for the process FEED of general offshore production plants. First, various activities of the general process FEED engineering are summarized, and then the offshore process FEED method, which is suitable for application to all types of offshore oil and gas production plants, is proposed. Second, an integrated process engineering environment is built based on the proposed FEED method. Finally, the integrated process engineering environment is applied to topsides systems of an LNG FPSO in order to verify the validity and applicability of the proposed FEED method. As a result, it is shown that the proposed FEED method can be applied to the process FEED engineering of FPSOs and moreover will be able to contribute to perform successful offshore projects in the future.