• 제목/요약/키워드: offset correction

Search Result 134, Processing Time 0.025 seconds

Implementation of a coherent detector with minimum errors for radar receiver (최소 에러를 갖는 레이다 수신기용 동기 검파 회로의 구현)

  • 양진모;김세영;김선주;전병태
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.11
    • /
    • pp.60-69
    • /
    • 1996
  • In this study, when the coherent detector has been developed and manufactured in the receiver of radar system, we have suggested and realized the 'Frequecny-Feedback correction (FFC)' that extracts its errors affecting the performance of radar, such as amplitude imbalances (k), phase imbalance ($\varphi$) between channels and offset votlages and corrects them to improve radar performances. Applying the FFC proposed, we analyzed sthe properties of the coherent detector and compared its perfomances after and before correction procdure. After the correction sequence, the amplitude imbalance was improved upt o 2dB and the phase imbalance over 9$^{\circ}$. The image rejection ratio (IRR), one of the figures of merit of radar system, was made better above 9 dB after correcting the coherent detector which possessed 23 dB before.

  • PDF

Digital Holographic Microscopy with extended field of view using tool for generic image stitching

  • Stepien, Piotr;Korbuszewski, Damian;Kujawinska, Malgorzata
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.73-83
    • /
    • 2019
  • This paper describes in detail the processing path leading to successful phase images stitching in digital holographic microscope for the extension of the field of view. It applies FIJI Grid/Collection Stitching Plugin, which is a general tool for images stitching, non-specific for phase images. The FIJI plugin is extensively supported by aberration and phase offset correction. Comparative analysis of different aberration correction methods and data processing strategies is presented, together with the critical analysis of their applicability. The proposed processing path provides good background for statistical phase analysis of cell cultures and digital phase pathology.

Analysis of Noise Power Spectrum According to Flat-Field Correction in Digital Radiography (디지털 의료영상에서 Flat-Field 보정에 따른 Noise Power Spectrum 분석)

  • Lee, Meena;Kwon, Soonmu;Chon, Kwon Su
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.3
    • /
    • pp.227-232
    • /
    • 2013
  • The pixels used in a digital X-ray detector have different sensitivities and offset values. A non-uniform image is consequently obtained. Flat-field correction was introduced to resolve this problem and carried out image preprocessing in a digital imaging system. Nevertheless, the non-uniform images caused by several reasons have been being occasionally acquired. In this study, the non-uniform images acquired in digital imaging systems were applied to flat-field correction, and NPSs were calculated and analyzed with those images before and after correction. It was confirmed that low frequency noise were effectively eliminated.

PRECISE RANGE DETERMINATION USING LASER RANGING DATA OF LAGEOSE II (LAGEOS II 위성의 LASER 관측자료를 이용한 정밀거리 결정)

  • 김광열;김형규;장홍술;손건호;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.189-196
    • /
    • 1993
  • Satellite laser ranging observation of LAGEOS II has been performed using the SLR System at Sheshan Laser Ranging Station, Shanghai Observatory. And we obtained 1,838 observational points. The observed range data is corrected by means of system delay correction using ground target observation, atmospheric refraction delay correction, offset correction, general relativistic correction and tide correction including solid tide, polar tide and ocean tide. As a result, the determined range delay mean value is 19.12m and the mean internal accuracy by means of polynomial fitting and least square method is $\pm$7cm. Corrected observational points are 1,340 and noise ratio to total observational points is 27.1%.

  • PDF

A Study for Remained Efficiency of Correction Heating after Block Lifting (블록 리프팅 후 갑판 교정가열의 잔존 효율 연구)

  • Ha, Yun-Sok;Won, Seok-Hee;Yi, Myung-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2008.09a
    • /
    • pp.118-125
    • /
    • 2008
  • The deck plates of ship block is made of thin plates in their construction. A main reason of using thin plates is that deck plates don't need to support large structural loads. Therefore, out-of-plane deformations between stiffeners are frequent in deck blocks. Because these are got right by correction heating, they continuously causes quality problems in the final dock-building process. According to preceding research, the lifting process by cranes would offset the effect of correction heating. This study finds out the remained efficiency of correction heating when tensional loads are added by a lifting to corrected parts. We used inherent strains in calculating the efficiency, and established the methodology where the positions for callings are. For getting more accurate positions, besides the structural lifting analysis, welding deformation analysis with upper block and measured data from a serial ship are also referenced.

  • PDF

Spatial Compare Filter Based Real-Time dead Pixel Correction Method for Infrared Camera

  • Moon, Kil-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.35-41
    • /
    • 2016
  • In this paper, we propose a new real-time dead pixel detection method based on spatial compare filtering, which are usually used in the small target detection. Actually, the soft dead and the small target are cast in the same mold. Our proposed method detect and remove the dead pixels as applying the spatial compare filtering, into the pixel outputs of a detector after the non-uniformity correction. Therefore, we proposed method can effectively detect and replace the dead pixels regardless of the non-uniformity correction performance. In infrared camera, there are usually many dead detector pixels which produce abnormal output caused by manufactural process or operational environment. There are two kind of dead pixel. one is hard dead pixel which electronically generate abnormal outputs and other is soft dead pixel which changed and generated abnormal outputs by the planning process. Infrared camera have to perform non-uniformity correction because of structural and material properties of infrared detector. The hard dead pixels whose offset values obtained by non-uniformity correction are much larger or smaller than the average can be detected easily as dead pixels. However, some dead pixels(soft dead pixel) can remain, because of the difficulty of uncleared decision whether normal pixel or abnormal pixel.

Comparison of Correction Coefficients for the Non-uniformity of Pixel Response in Satellite Camera Electronics (위성카메라 전자부의 화소간 응답불균일성 보정계수의 비교검토)

  • Kong, Jong-Pil;Lee, Song-Jae
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.89-98
    • /
    • 2011
  • Four kinds of gain and offset correction coefficients that are used to correct the nonuniformity between pixels are discussed. And their correction performance has been compared by performing image correction. using the correction coefficients calculated, on the real image data obtained from a newly fabricated camera electronics system. The performance of the correction coefficients depends in general on the number of the light input levels used to obtain the reference image. The result shows that, as expected obviously, when only two light input levles are used to obtain the reference image, even though its correction coefficients are relatively easily calculated, the correction performance is relatively poor. And with the number of light inputs increased to a value of larger than two, the correction performance is improved. It is noted, however, no Significant performance difference is found between the different correction coefficients employed.

A STUDY OF TROPOSPHERIC EFFECT ON HIGH PRECISION GPS HEIGHT DETERMINATION

  • Wang, Chuan-Sheng;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.382-385
    • /
    • 2007
  • Constantly enhancing positioning accuracy by the Global Positioning System (GPS) technique is of great importance, but challenging, especially after the GPS positioning technique has been improved considerably during the past two decades. The associated main error sources have been reduced substantially, if not eliminated. Troposhpeic influence with its highly temporal and spatial variability appears to be one of the major error sources. It is hence an increased interest among GPS researchers to reduce the tropospheric influence or delay. Two techniques have been commonly implemented to correct the tropospheric impact. The first technique, known as parameter estimation, characterizes the path delay with empirical models and the parameters of interest are determined from the GPS measurements. The second strategy, termed as external correction, involves independent path delay measurements. The present study is an integration of both techniques in which the parameter estimation as well as external correction are used to correct the path delay for $110{\sim}210$ km range baselines. Twenty-four parameters have been obtained in 24 hours solution by setting the cutoff angle at 3 and 15 degrees for parameter estimation strategy. Measurements from meteorological instruments and water vapor radiometer (WVR) are applied in the GPS data processing, separately, as an external strategy of present research work. Interesting results have been found, indicating more stable repeatability in baseline when the external correction strategy is applied especially with the inclusion of WVR observations. The offset of an order of 1 cm is found in the baselines determined by the two strategies. On the other hand, parameter estimation exhibits more stable in terms of GPS height repeatability. The offset in the GPS height determined by the two strategies is on the order of few centimeters.

  • PDF

Real-Time Fixed Pattern Noise Suppression using Hardware Neural Networks in Infrared Images Based on DSP & FPGA (DSP & FPGA 기반의 적외선 영상에서 하드웨어 뉴럴 네트워크를 이용한 실시간 고정패턴잡음 제어)

  • Park, Chang-Han;Han, Jung-Soo;Chun, Seung-Woo
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.4
    • /
    • pp.94-101
    • /
    • 2009
  • In this paper, we propose design of hardware based on a high speed digital signal processor (DSP) and a field programmable gate array (FPGA) for real-time suppression of fixed pattern noise (FPN) using hardware neural networks (HNN) in cooled infrared focal plane array (IRFPA) imaging system FPN appears a limited operation by temperature in observable images which applies to non-uniformity correction for infrared detector. These have very important problems because it happen serious problem for other applications as well as degradation for image quality in our system Signal processing architecture for our system operates reference gain and offset values using three tables for low, normal, and high temperatures. Proposed method creates virtual tables to separate for overlapping region in three offset tables. We also choose an optimum tenn of temperature which controls weighted values of HNN using mean values of pixels in three regions. This operates gain and offset tables for low, normal, and high temperatures from mean values of pixels and it recursively don't have to do an offset compensation in operation of our system Based on experimental results, proposed method showed improved quality of image which suppressed FPN by change of temperature distribution from an observational image in real-time system.

A 10-b 500 MS/s CMOS Folding A/D Converter with a Hybrid Calibration and a Novel Digital Error Correction Logic

  • Jun, Joong-Won;Kim, Dae-Yun;Song, Min-Kyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • A 10-b 500 MS/s A/D converter (ADC) with a hybrid calibration and error correction logic is described. The ADC employs a single-channel cascaded folding-interpolating architecture whose folding rate (FR) is 25 and interpolation rate (IR) is 8. To overcome the disadvantage of an offset error, we propose a hybrid self-calibration circuit at the open-loop amplifier. Further, a novel prevision digital error correction logic (DCL) for the folding ADC is also proposed. The ADC prototype using a 130 nm 1P6M CMOS has a DNL of ${\pm}0.8$ LSB and an INL of ${\pm}1.0$ LSB. The measured SNDR is 52.34-dB and SFDR is 62.04-dBc when the input frequency is 78.15 MHz at 500 MS/s conversion rate. The SNDR of the ADC is 7-dB higher than the same circuit without the proposed calibration. The effective chip area is $1.55mm^2$, and the power dissipates 300 mW including peripheral circuits, at a 1.2/1.5 V power supply.