• Title/Summary/Keyword: offline dictionary attack

Search Result 5, Processing Time 0.026 seconds

Dictionary Attacks against Password-Based Authenticated Three-Party Key Exchange Protocols

  • Nam, Junghyun;Choo, Kim-Kwang Raymond;Kim, Moonseong;Paik, Juryon;Won, Dongho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.3244-3260
    • /
    • 2013
  • A three-party password-based authenticated key exchange (PAKE) protocol allows two clients registered with a trusted server to generate a common cryptographic key from their individual passwords shared only with the server. A key requirement for three-party PAKE protocols is to prevent an adversary from mounting a dictionary attack. This requirement must be met even when the adversary is a malicious (registered) client who can set up normal protocol sessions with other clients. This work revisits three existing three-party PAKE protocols, namely, Guo et al.'s (2008) protocol, Huang's (2009) protocol, and Lee and Hwang's (2010) protocol, and demonstrates that these protocols are not secure against offline and/or (undetectable) online dictionary attacks in the presence of a malicious client. The offline dictionary attack we present against Guo et al.'s protocol also applies to other similar protocols including Lee and Hwang's protocol. We conclude with some suggestions on how to design a three-party PAKE protocol that is resistant against dictionary attacks.

Dictionary Attack on Huang-Wei's Key Exchange and Authentication Scheme (Huang-Wei의 키 교환 및 인증 방식에 대한 사전공격)

  • Kim, Mi-Jin;Nam, Jung-Hyun;Won, Dong-Ho
    • Journal of Internet Computing and Services
    • /
    • v.9 no.2
    • /
    • pp.83-88
    • /
    • 2008
  • Session initiation protocol (SIP) is an application-layer prolocol to initiate and control multimedia client session. When client ask to use a SIP service, they need to be authenticated in order to get service from the server. Authentication in a SIP application is the process in which a client agent present credentials to another SIP element to establish a session or be granted access to the network service. In 2005, Yang et al. proposed a key exchange and authentication scheme for use in SIP applications, which is based on the Diffie-Hellman protocol. But, Yang et al.'s scheme is not suitable for the hardware-limited client and severs, since it requires the protocol participant to perform significant amount of computations (i.e., four modular exponentiations). Based on this observation. Huang and Wei have recently proposed a new efficient key exchange and authentication scheme thor improves on Yang et al.'s scheme. As for security, Huang and Wei claimed, among others, that their scheme is resistant to offline dictionary attacks. However, the claim turned out to be untrue. In this paper, we show thor Huang and Wei's key exchange and authentication scheme is vulnerable to on offline dictionary attack and forward secrecy.

  • PDF

Cryptanalysis of Hu-Niu-Yang's Multi-server Password Authenticated Key Agreement Schemes Using Smart Card

  • Lee, Sang-Gon;Lim, Meng-Hui;Lee, Hoon-Jae
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.340-344
    • /
    • 2009
  • Multi-server password authentication schemes enable remote users to obtain service from multiple servers with single password without separately registering to each server. In 2007, Hu-Niu-Yang proposed an improved efficient password authenticated key agreement scheme for multi-server architecture based on Chang-Lee's scheme proposed in 2004. This scheme is claimed to be more efficient and is able to overcome a few existing deficiencies in Chang-Lee's scheme. However, we find false claim of forward secrecy property and some potential threats such as offline dictionary attack, key-compromise attack, and poor reparability in their scheme. In this paper, we will discuss these issues in depth.

Password-Based Authenticated Tripartite Key Exchange Protocol (패스워드 기반 인증된 3자 키 교환 프로토콜)

  • Lee, Sang-Gon;Lee, Hoon-Jae;Park, Jong-Wook;Yoon, Jang-Hong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.525-535
    • /
    • 2005
  • A password-based authenticated tripartite key exchange protocol based on A. Joux's protocol was proposed. By using encryption scheme with shared password, we can resolve man-in-the-middle attack and lack of authentication problems. We also suggested a scheme to avoid the offline dictionary attack to which symmetric encryption schemes are vulnerable. The proposed protocol does not require a trusted party which is required in certificate or identity based authentication schemes. Therefore in a ad hoc network which is difficult to install network infrastructure, the proposed protocol would be very useful. The proposed protocol is more efficient in computation aspect than any existing password-based authenticated tripartite key exchange protocols. When it is used as a base line protocol of tree based group key exchange protocol, the computational weak points of the proposed protocol are compensated.

  • PDF

Efficient and Practical Appraoch to Check Certificate Revocation Status of the WLAN Authentication Server's Public Key (WLAN 인증서버의 인증서 폐지상태 확인 기술)

  • Park DongGook;Cho Kyung-Ryong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.5
    • /
    • pp.958-964
    • /
    • 2005
  • WLAN user authentication is mostly based on user password resulting in vulnerability to the notorious 'offline dictionary attack'. As a way around this problem. EAP-TTLS and PEAP protocols are increasing finding their way into WLANs, which are a sort of combination of password protocols and the TLS public-key protocol. This leads to the use of the public-key certificate of the WLAM authentication server, and naturally the concern arises about its revocation status. It seems, however, that any proper soulution has not been provided to address this concern. We propose a very efficent and proper solution to check the certificate revocation status.