• Title/Summary/Keyword: off-road condition

Search Result 35, Processing Time 0.027 seconds

Rolling Characteristics of Towed Wheel with Tire Inflation Pressure on Off-Road (Off-road에서 타이어공기압에 따른 피구동륜의 구름 특성)

  • Park W. Y.;Lee H. J.;Hong J. H.;Chang Y. C.;Lee S. S.;Lee K. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.69-74
    • /
    • 2005
  • This study was carried out to investigate experimentally the effect of the ground condition and tire inflation pressure on rolling characteristics of towed wheel, including the deformation, sinkage, effective rolling radius and motion resistance of tire. The experiment was performed at soil bin for the three levels of off-road conditions(ground-I, ground-II and ground-III) and a on-road condition(ground-IV), and for the four levels of tire inflation pressure which were 80 kPa, 160 kPa, 240 kPa and 320 kPa. The results of this study are summarized as follows: 1. As the tire inflation pressure of towed wheel increased, the tire deformation decreased exponentially, but the tire sinkage increased exponentially. This trend was getting bigger as ground condition was getting softer. 2. The increase of tire inflation pressure increased the effective rolling radius of towed wheel, and this kind of trend occurred greatly as ground condition was soft. As a result, the effective rolling radius for the off-road condition was always larger than that for on-road condition. 3. For the on-road condition, as the tire inflation pressure of towed wheel increased, the motion resistance decreased, but for the off-road condition, augmentation of tire inflation pressure increased the motion resistance. Also, the effect of inflation pressure on motion resistance appeared great as ground condition was soft. Therefore, in order to improve the tire performance by the control of inflation pressure, it is desirable to reduce the tire inflation pressure for off-road condition and to increase the tire inflation pressure for on-road condition.

The Effect of Ground Condition, Tire Inflation Pressure and Axle Load on Steering Torque (노면상태, 타이어 공기압 및 축하중이 조향력에 미치는 영향)

  • Park W. Y.;Kim S. Y.;Lee C. H.;Choi D. M;Lee S. S.;Lee K. S.
    • Journal of Biosystems Engineering
    • /
    • v.29 no.5 s.106
    • /
    • pp.419-424
    • /
    • 2004
  • In this study, a series of soil bin experiment was carried out to investigate experimentally the effect of the tire inflation pressure and axle load of tire on the steering torque for the off-road condition. The experiment was performed at the three levels of off-road conditions(ground I, ground II and ground III) and on-road condition(ground IV), four levels of tire inflation pressure(120 kPa, 170 kPa, 220 kPa and 270 kPa), and four levels of axle load(1470N, 1960N, 2450N and 2940N). The results of this study are summarized as follows: 1. Steering torque at the off-road conditions were higher than that on the on-road conditions for all levels of tire inflation pressure and axle load. 2. As the axle load increased, steering torque also increased f3r all experimental ground conditions. 3. For the axle load of 1470N the biggest steering torque was measured on the ground condition I, but as the axle load increased to the value of 2940N the biggest steering torque was measured on the ground condition III. From the above results, it was found that for the low axle load, steering torque gets higher on the soft ground condition, but for the high axle load, steering torque gets higher on hard ground condition for whole range of experimental conditions. 4. As the tire inflation pressure decreased, steering torque increased on the on-road condition, but no specific trend was not found at the off-road conditions.

A Study on Zero-Condition of ASAE for Estimating Slip-Traction Relationship of Off-Road Vehicles (오프로드차량의 슬립-견인력 관계의 평가에 사용되는 ASAE 제로조건에 관한 연구)

  • 박원엽;이규승;오만수;박준걸
    • Journal of Biosystems Engineering
    • /
    • v.27 no.6
    • /
    • pp.501-512
    • /
    • 2002
  • Traction performance of off-road vehicles is estimated using slip-traction relationships Two zero condition accepted by ASAE have been used widely to obtain the slip-traction relationships of off-road vehicles. This study was carried out using the soil bin systems to investigate the characteristic of slip-traction curves obtained using two zero conditions defined by ASAE. which are driving and driven zero condition, and to present disadvantage of slip-traction relationship based on two zero conditions of ASAE. The results of this study are summarized as follows : 1. For the driving zero condition, the curve of slip-traction relationship shows some issues. The first question is that the slip is zero when the traction is zero. The second question is that the value of slip is smaller than that of corresponding real slip, as the rolling radius decreased f3r the setting zero condition with driving wheel. 2. For the driven zero condition. slip occurs when the traction is zero, which is more realistic results than driving zero condition. But when a zero condition is set, skid occurs and this result increased the rolling radius of tire and increased slip value f3r the specific traction value of whole slip range. This kind of trend was getting bigger as the soil is softer, or the tire inflation pressure is higher. 3. From the results of this study, it was found that slip-traction relationship obtained by two zero conditions of ASAE is not realistic in estimating the traction performance of off-road vehicles. And also slip-traction relationship obtained for the same experimental condition showed different result in accordance with chosen zero condition,

Experimental Study on Steering Torque Characteristics of Tractor (트랙터의 조타력 특성에 관한 실험적 연구)

  • Lee, Sang-Sik;Mun, Jung-Whan;Kang, Jin-Seok;Lee, Choong-Ho;Hong, Jong-Ho;Park, Won-Yeop
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.231-238
    • /
    • 2010
  • The purpose of this paper was to investigate experimentally the steering torque characteristics of a tractor operated in various ground conditions. The experiments were conducted with the tractor reconstructed for steering torque test of the tractor at two different off-road conditions (ground-I and ground-II) and a on-road condition (ground-III), three different levels of tire inflation pressures (69 kPa, 138 kPa and 207 kPa), and four different levels of axle loads (4120 N, 4730 N, 5340 N and 5950 N). The results of this study are summarized as follows: 1) The steering torque was increased with the increase in steering angle for all experimental levels of ground conditions, axle loads and inflation pressures of tire. 2) As the axle load increased, the steering torque of the tractor increased for all ground conditions, and the increasing rate of the steering torque with the increase of axle load was greater at on-road than at off-road. 3) As the tire inflation pressure decreased, the steering torque increased. Also the increasing tendency of the steering torque with decreasing the tire inflation pressure showed that the harder the ground was, the larger the effect was. But for the soft ground condition, ground-I, no specific trend with inflation pressures was found. 4) Steering angle-steering torque relationship with ground conditions showed that the increasing rate of the steering torque was greater at on-road than off-road for small steering angle under 10 degree, and was greater at off-road than on-road for large steering angles over 10 degree.

RESEARCH ON MODULARIZED DESIGN AND PERFORMANCE ASSESSMENT BASED ON MULTI-DRIVER OFF-ROAD VEHICLE DRIVING-LINE

  • Yi, J.J.;Yu, B.;Hu, D.Q.;Li, C.G.
    • International Journal of Automotive Technology
    • /
    • v.8 no.3
    • /
    • pp.375-382
    • /
    • 2007
  • The multi-driver off-road vehicle drive-line consists of many components, with close connections among them. In order to design and analyze the drive-line efficiently, a modular methodology should be taken. The aim of a modular approach to the modeling of complex systems is to support behavior analysis and simulation in an iterative and thus complex engineering process, by using encapsulated submodels of components and of their interfaces. Multi-driver off-road vehicles are comparatively complicated. The driving-line is an important core part to the vehicle, it has a significant contribution to the performance. Multi-driver off-road vehicles have complex driving-lines, so performance is heavily dependent on the driving-line. A typical off-road vehicle's driving-line system consists of a torque converter, transmission, transfer case and driving-axles, which transfers the power generated by the engine and distributes it effectively to the driving wheels according to the road condition. According to its main function, this paper proposes a modularized approach for design and evaluation of the vehicle's driving-line. It can be used to effectively estimate the performance of the driving-line during the concept design stage. Through an appropriate analysis and assessment method, an optimal design can be reached. This method has been applied to practical vehicle design, it can improve the design efficiency and is convenient to assess and validate the performance of a vehicle, especially of multi-driver off-road vehicles.

A Study on Exhaust Gas Characteristics of Off-road Mechanical Diesel Engine According to EGR Map Application (Off-Road 기계식 디젤엔진의 EGR Map 적용에 따른 배출가스 특성 연구)

  • Kim, HoonMyung;Kang, JeongHo;Han, DaHye;Ha, HyeongSoo;Jung, HakSup;Pyo, SuKang;Ahn, JuengKyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.8
    • /
    • pp.665-670
    • /
    • 2014
  • Because reducing atmospheric pollution is becoming a serious issue, studies are actively focusing on exhaust gas reduction. This study was conducted to determine the emission characteristics when applying an EGR system, the main approach used for NOx reduction, to an off-road mechanical diesel engine. For the application of the EGR system, the emission characteristics in consideration of the engine conditions were analyzed. The optimum EGR ratio for NOx emission reduction was determined by applying variable EGR conditions for each engine speed condition. Considering the above process, the emission characteristics of the modified EGR condition are compared with those of other conditions (non-EGR and existing EGR condition) in the NRTC mode. Consequently, NOx emission was reduced by around 42 compared with the non-EGR condition when using the modified EGR map.

A Study on Prediction of Maximum Steering Torque of Tractor on Off-road (Off-road에서 트랙터의 최대 조타력 예측에 관한 연구)

  • Kim S.Y.;Lee K.S.;Lee S.S.;Lee S.B.;Lee J.W.;Park W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.81-87
    • /
    • 2006
  • In this study, a mathematical model was suggested to predict the maximum steering torque of a tractor on off-road. The model took into account the characteristics of soil, including the pressure-sinkage and the shearing characteristics as well as the primary design parameters of steering system of the tractor. The efficiency of the developed model was verified via comparison of the maximum steering torque predicted using the model with those measured from steering torque test. The results showed that the predicted maximum steering torques were in good agreement with the measured ones from the steering test on soft soil in which tractor is generally operated. Thus, we concluded that the model developed in this study could be used for prediction of maximum steering torque of a tractor.

Effects of Ground Surface Condition on Steering Force for Tractors with Electronic Power Steering System (노면상태가 전동조향식 트랙터 조향력에 미치는 영향)

  • Lee S. S.;Lee K. S.;Park W. Y.;Kim S. Y.;Lee J. Y.;Mun J. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.6 s.113
    • /
    • pp.327-332
    • /
    • 2005
  • In this study, the electronic power steering control system was developed and it was carried out to investigate experimentally the effect of the steering force for the on-road and off-road. The electronic power steering control system was engineered new trend system of power steering control system for tractor. It was composed of the electronic controller, detector, motor and mechanism mounted on tractor chassis. It was tested at the field in condition of tractor traveling speed 0 km/h, 3 km/h, 8 km/h, 11 km/h, 15 km/h, 18 km/h, 22 km/h, 25 km/h for measuring a maximum steering force. As a speed of tractor increased, a steering force decreased regardless of on-road or off-road. In addition, it is sufficiently a possibility of application of the steering system of tractor.

A Study on the Swept Path Width for the Bimodal Tram (바이모달 트램 곡선 선회폭에 관한 연구)

  • Moon, Kyeong-Ho;Chang, Se-Ky;Mok, Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.51-56
    • /
    • 2011
  • The train travels on the track and, thus, the rear wheels precisely follow the paths of the front wheels. On the contrary, in the vehicles running on the road like automobiles, buses and trucks, the front wheels try to drag the rear ones toward them and across the inside of the curve. Off-tracking is defined as the radial offset between the path of the centerline of the front axle and the path of the centerline of the following axle. In the case of the bimodal tram with AWS(all wheel steering), the off-tracking decrease but the rear swing-out values increase because of the rear steering at the reverse phase angle. Thus, in order to determine the swept path width, maximum road width at the minimum turning radius, off-tracking and swing-out should be considered for the bimodal tram. In this paper, trajectory simulations were carried out for the various condition such as front steering, front and rear steering and suppression of swing-out to optimize the swept path width.

  • PDF

Development of Wheel-Terrain Interaction Device for Mobility Prediction of Off-road Vehicle (야지 차량의 기동성 예측을 위한 휠-토양 상호작용 시험장치 개발)

  • Oh, Hyunhwan;Kim, Gwanyoung;Kim, Jinseong;Shin, Yongjae;Lee, Kyu-Jin;Choi, Minsuk;Lee, Soo Jin
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.332-339
    • /
    • 2014
  • This paper presents on the development of wheel-terrain interaction device using low-priced sensors, which will be used to predict the drawbar pull and optimal slip of off-road vehicle in real time. The essential variables obtained in the device to predict the mobility of vehicles are determined based on semi-empirical model describing the wheel-terrain interaction. Using the developed device, the experiments about the wheel-terrain interaction were performed on the soil of the Jumunjin standard sand, which yielded dynamic weight, motor driving torque, drawbar pull, and sinkage with respect to wheel slip ratio. Finally, the repeatability of the measured data are verified through repeating the experiments three times on the same condition.