• 제목/요약/키워드: off-axis compression

검색결과 5건 처리시간 0.023초

Tension-Compression Asymmetry in the Off-Axis Nonlinear Rate-Dependent Behavior of a Unidirectional Carbon/Epoxy Laminate at High Temperature and Incorporation into Viscoplasticity Modeling

  • Kawai, M.;Zhang, J.Q.;Saito, S.;Xiao, Y.;Hatta, H.
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.265-285
    • /
    • 2009
  • Off-axis compressive deformation behavior of a unidirectional CFRP laminate at high temperature and its strain-rate dependence in a quasi-static range are examined for various fiber orientations. By comparing the off-axis compressive and tensile behaviors at an equal strain rate, the effect of different loading modes on the flow stress level, rate-dependence and nonlinearity of the off-axis inelastic deformation is elucidated. The experimental results indicate that the compressive flow stress levels for relatively larger off-axis angles of $30^{\circ}$, $45^{\circ}$ and $90^{\circ}$ are about 50 percent larger than in tension for the same fiber orientations, respectively. The nonlinear deformations under off-axis tensile and compressive loading conditions exhibit significant strain-rate dependence. Similar features are observed in the fiber-orientation dependence of the off-axis flow stress levels under tension and compression and in the off-axis flow stress differential in tension and compression, regardless of the strain rate. A phenomenological theory of viscoplasticity is then developed which can describe the tension-compression asymmetry as well as the rate dependence, nonlinearity and fiber orientation dependence of the off-axis tensile and compressive behaviors of unidirectional composites in a unified manner. It is demonstrated by comparing with experimental results that the proposed viscoplastic constitutive model can be applied with reasonable accuracy to predict the different, nonlinear and rate-dependent behaviors of the unidirectional composite under off-axis tensile and compressive loading conditions.

Characterization of Nonlinear Behaviors of CSCNT/Carbon Fiber-Reinforced Epoxy Laminates

  • Yokozeki, Tomohiro;Iwahori, Yutaka;Ishibashi, Masaru;Yanagisawa, Takashi
    • Advanced Composite Materials
    • /
    • 제18권3호
    • /
    • pp.251-264
    • /
    • 2009
  • Nonlinear mechanical behaviors of unidirectional carbon fiber-reinforced plastic (CFRP) laminates using cup-stacked carbon nanotubes (CSCNTs) dispersed epoxy are evaluated and compared with those of CFRP laminates without CSCNTs. Off-axis compression tests are performed to obtain the stress-strain relations. One-parameter plasticity model is applied to characterize the nonlinear response of unidirectional laminates, and nonlinear behaviors of laminates with and without CSCNTs are compared. Clear improvement in stiffness of off-axis specimens by using CSCNTs is demonstrated, which is considered to contribute the enhancement of the longitudinal compressive strength of unidirectional laminates and compressive strength of multidirectional laminates. Finally, longitudinal compressive strengths are predicted based on a kink band model including the nonlinear responses in order to demonstrate the improvement in longitudinal strength of CFRP by dispersing CSCNTs.

홀로그래픽 watermark를 이용한 영상 watermarking I I (Image Watermarking using holographic watermark)

  • 김규태;김수길;김종원;최종욱
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.181-183
    • /
    • 2003
  • We propose a new watermarking scheme that can be used to embed multiple bits and also resilient to JPEG compression and geometrical transforms such as scaling, rotation, and cropping, based on off-axis holographic watermark that allows multiple watermark recovery without original content(cover image). The holographic watermark is that Fourier transformed digital hologram is embedded into cover image in the spatial domain. The proposed method has not only increased robustness with a stronger embedding but also imperceptibility of the watermark in the evaluation process.

  • PDF

다단계 유통 추적을 위한 DWT-SVD 기반의 홀로그래피 포렌식마크 (Holographic Forensic Mark based on DWT-SVD for Tracing of the Multilevel Distribution)

  • 이덕;김종원
    • 한국통신학회논문지
    • /
    • 제35권2C호
    • /
    • pp.155-160
    • /
    • 2010
  • 본 논문은 다단계 불법유통 추적을 위하여 배포단계 마다 포렌식마크를 삽입하고 불법 유통시 삽입된 포렌식마크를 검출하여 유통경로 추적이 가능하도록 하는 방식을 제안한다. 단계마다 저작권 및 사용자 정보를 포함한 포렌식마크를 삽입해야 하므로 대용량의 정보 삽입이 필요하고, 또 단계마다 삽입된 정보들 사이에 신호간섭이 발생하지 않도록 하여야 정확한 검출이 가능하다. 제안방식은 포렌식마크로부터 디지털 홀로그램을 생성하여 DWT-SVD 도메인에 삽입하는 방식으로 다단계 불법유통 추적이 가능하도록 구성하였다. 대용량 정보 삽입을 구현하기 위하여 포렌식마크로부터 비축홀로그램(Off-axis Hologram)을 생성하고 단계별 유통추적이 가능하도록 홀로그램을 DWT(Discrete Wavelet Transform)도메인의 HL, LH, HH band에 삽입하여 신호간섭을 줄였다. 또 SVD(Singular Value Decomposition)를 홀로그램이 삽입된 신호에 적용하여 단계별 검출성능 및 안전성을 향상시켰다. 실험결과 각 단계별로 저작권 정보 및 사용자 정보로 활용이 가능한 128bit의 포렌식마크 삽입이 가능하여 3단계 배포에 총 384bit를 삽입하고 단계별로 정확한 검출이 이루어졌으며 JPEG압축에도 강인한 것으로 나타났다.

수렴성빔 전자회절법을 이용한 $SiO_2/Si$ 계면 부위의 격자 변형량 측정 (Measurements of Lattice Strain in $SiO_2/Si$ Interface Using Convergent Beam Electron Diffraction)

  • 김긍호;우현정;최두진
    • Applied Microscopy
    • /
    • 제25권2호
    • /
    • pp.73-79
    • /
    • 1995
  • The oxidation of silicon wafers is an essential step in the fabrication of semiconductor devices. It is known to induce degradation of electrical properties and lattice strain of Si substrate from thermal oxidation process due to charged interface and thermal expansion mismatch from thermally grown SiO, film. In this study, convergent beam electron diffraction technique is employed to directly measure the lattice strains in Si(100) and $4^{\circ}$ - off Si(100) substrates with thermally grown oxide layer at $1200^{\circ}C$ for three hours. The ratios of {773}-{973}/{773}-{953} Higher Order Laue Zone lines were used at [012] zone axis orientation. Lattice parameters of the Si substrate as a function of distance from the interface were determined from the computer simulation of diffraction patterns. Correction value for the accelerating voltage was 0.2kV for the kinematic simulation of the [012]. HOLZ patterns. The change in the lattice strain profile before and after removal of oxide films revealed the magnitudes of intrinsic strain and thermal strain components. It was shown that $4^{\circ}$ -off Si(100) had much lower intrinsic strain as surface steps provide effective sinks for the free Si atoms produced during thermal oxidation. Thermal strain in the Si substrate was in compression very close to the interface and high concentration of Si interstitials appeared to modify the thermal expansion coefficient of Si.

  • PDF