• 제목/요약/키워드: off gas hydrogen

검색결과 98건 처리시간 0.028초

오프그리드용 풍력-연료전지 하이브리드 시스템 개발 (Development of WT-FC Hybrid System for Off-Grid)

  • 최종필;박내춘;김상훈;김병희;남윤수;유능수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.383-386
    • /
    • 2007
  • This paper describes the design and integration of the wind- fuel cell hybrid system. The hybrid system components included a wind turbine, an electrolyzer (for generation of H2), a PEMFC (Proton Exchange Membrane Fuel Cell), storage system and BOP (Balance of Plant) system. The energy input is entirely provided by a wind turbine. A DC-DC converter controls the power input to the electrolyzer, which produces hydrogen and oxygen form water. The hydrogen used the fuel for the PEMFC. The hydrogen is compressed and stored in high pressure tank by hydrogen gas booster system.

  • PDF

저 발열량 가스 연료의 화염거동 및 NOx 발생 특성에 관한 실험적 연구 (Experimental Study on the Flame Behavior and the NOx Emission Characteristics of Low Calorific Value Gas Fuel)

  • 김용철;이찬
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 춘계 학술발표회 논문집
    • /
    • pp.89-93
    • /
    • 1999
  • Experimental studies are conducted to investigate the flame stability and the thermal/fuel NOx formation characteristics of the low calorific value(LCV) gas fuel. Synthetic LCV fuel gas is produced through mixing carbon monoxide, hydrogen, nitrogen and ammonia on the basis that the thermal input of the syngas fuel into a burner is identical to that of natural gas, and then the syngas mixture is fed to and burnt with air on flat flame burner. Flame behaviors are observed to identify flame instability due to blow-off or flash-back when burning the LCV fuel gas at various equivalence ratio conditions. Measurements of NOx in combustion gas are made for comparing thermal and fuel NOx emissions from the LCV syngas combustion with those of the natural gas one, and for analyzing ammonia to NOx conversion mechanism. In addition, the nitrogen dilution of the LCV syngas is preliminarily attempted as a NOx reduction technique.

  • PDF

HORIZON EXPANSION OF THERMAL-HYDRAULIC ACTIVITIES INTO HTGR SAFETY ANALYSIS INCLUDING GAS-TURBINE CYCLE AND HYDROGEN PLANT

  • No, Hee-Cheon;Yoon, Ho-Joon;Kim, Seung-Jun;Lee, Byeng-Jin;Kim, Ji-Hwang;Kim, Hyeun-Min;Lim, Hong-Sik
    • Nuclear Engineering and Technology
    • /
    • 제41권7호
    • /
    • pp.875-884
    • /
    • 2009
  • We present three nuclear/hydrogen-related R&D activities being performed at KAIST: air-ingressed LOCA analysis code development, gas turbine analysis tool development, and hydrogen-production system analysis model development. The ICE numerical technique widely used for the safety analysis of water-reactors is successfully implemented into GAMMA, with which we solve the basic equations for continuity, momentum conservation, energy conservation of the gas mixture, and mass conservation of 6 species (He, N2, O2, CO, CO2, and H2O). GAMMA has been extensively validated using data from 14 test facilities. We developed a tool to predict the characteristics of HTGR helium turbines based on the throughflow calculation with a Newton-Raphson method that overcomes the weakness of the conventional method based on the successive iteration scheme. It is found that the current method reaches stable and quick convergence even under the off-normal condition with the same degree of accuracy. The dynamic equations for the distillation column of HI process are described with 4 material components involved in the HI process: H2O, HI, I2, H2. For the HI process we improved the Neumann model based on the NRTL (Non-Random Two-Liquid) model. The improved Neumann model predicted a total pressure with 8.6% maximum relative deviation from the data and 2.5% mean relative deviation, and liquid-liquid-separation with 9.52% maximum relative deviation from the data.

배기관에서의 합성가스 연소에 따른 배기가스 온도 및 농도 변화에 관한 실험적 연구 (An Experimental Study on Variations of Exhaust Gas Temperature and Concentration with Synthetic Gas Combustion in Exhaust Manifold)

  • 조용석;이성욱;양승일;송춘섭;박영준
    • 한국자동차공학회논문집
    • /
    • 제16권4호
    • /
    • pp.56-62
    • /
    • 2008
  • A synthetic gas reformed from hydrocarbon-based fuels consists of $H_2$, CO and $N_2$. Hydrogen contained in the synthetic gas is a very useful species in chemical processes, due to its wide flammability range and fast burning speed. The ESGI (Exhaust Synthetic Gas Injection) technology is developed to shorten the light-off time of three way catalysts through combustion of the synthetic gas in the exhaust manifold during the cold start period of SI engines. Before the ESGI technology is applied to the test engine, the authors set a test rig that consists of gas temperature and composition controllers, an exhaust pulse generator and an exhaust manifold with a visualization window, in order to optimize the point and conditions of injection of the synthetic gas. Through measuring burned gas temperatures and taking photographs of synthetic gas combustion at the outlet of the exhaust manifold, the authors tried to find the optimal injection point and conditions. Analysis of burned gas composition has been performed for various $O_2$ concentrations. As a result, when the synthetic gas is injected at the port outlet of the cylinder No. 4 and $O_2$ concentration exceeds 4%, combustion of the synthetic gas is strong and effective in the exhaust manifold.

해양바이오수소개발 사업의 상업생산을 위한 예비경제성평가 (Economic Feasibility Study for Commercial Production of Bio-hydrogen)

  • 박세헌;유영돈;강성균
    • Ocean and Polar Research
    • /
    • 제38권3호
    • /
    • pp.225-234
    • /
    • 2016
  • This project sought to conduct an economic feasibility study regarding the commercial production of bio-hydrogen by the marine hyperthermophilic archaeon, Thermococcus onnurineus NA1 using carbon monoxide-containing industrial off-gas. We carried out the economic evaluation of the bio-hydrogen production process using the raw material of steel mill by-product gas. The process parameter was as follows: $H_2$ production rate was 5.6 L/L/h; the conversion of carbon monoxide was 60.7%. This project established an evaluation criterion for about 10,000 tonne/year. Inflation factors were considered as 3%. The operating costs were recalculated based on prices in 2014. The total investment required for development was covered 30% by capital and 70% by a loan. The operation cost for the 0.5-year test and integration, and the cost for the first three months in the 50% production period were considered as the working capital in the cost estimation. The costs required for the rental of office space, facilities, and other related costs from the construction through to full-scale production periods were considered as continuing expenses. Materials, energy, waste disposal and other charges were considered as the operating cost of the development system. Depreciation, tax, maintenance and repair, insurance, labor, interest rate charges, general and administrative costs, lubrication and miscellaneous expenses were also calculated. The hydrogen price was set at US$ 4.15/kg for the economic evaluation. As a result, the process was considered to be economical with the payback period of 6.3 years, NPV of 18 billion Won and IRR of 26.7%.

충돌제트 버너에서 합성가스($H_2/CO$) 공기 예혼합 화염의 열전달 특성에 관한 실험적 연구 - Part 1 : 스트레치된 부상 화염 (An Experimental Study on Heat Transfer Characteristics of Synthetic Gas($H_2/CO$)Air Premixed Flames in an Impinging Jet Burner - Part 1 : Stretched Lift-off Flames)

  • 강기중;조준익;이기만
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.453-456
    • /
    • 2011
  • 합성가스를 이용한 충돌제트 버너에서 신장된 예혼합 화염의 열전달 특성에 관한 실험적 연구를 수행하였다. 본 연구에서는 석탄을 가스화하는 과정에서 추출되는 수소와 일산화탄소를 혼합한 합성가스를 연료로 사용하였다. 정체점에서의 열유속은 전체 신장율이 증가함에 따라 증가하다 다시 감소하는 것이 관찰되었다. 또한 정체점에서의 열유속이 노즐로부터 충돌판까지 거리가 증가함에 따라 증가하는 것을 확인하였다. 본 연구는 석탄에서 발생하는 부생가스의 주성분인 수소와 일산화탄소를 실용화하는 연구 중 기초 연구이다.

  • PDF

열처리 효과에 따른 SnO2 기반 수소가스 센서의 특성 최적화 (Optimization of SnO2 Based H2 Gas Sensor Along with Thermal Treatment Effect)

  • 정동건;이준엽;권진범;맹보희;김영삼;양이준;정대웅
    • 센서학회지
    • /
    • 제31권5호
    • /
    • pp.348-352
    • /
    • 2022
  • Hydrogen gas (H2) which is odorless, colorless is attracting attention as a renewable energy source in varions applications but its leakage can lead to disastrous disasters, such as inflammable, explosive, and narcotic disasters at high concentrations. Therefore, it is necessary to develop H2 gas sensor with high performance. In this paper, we confirmed that H2 gas detection ability of SnO2 based H2 gas sensor along with thermal treatment effect of SnO2. Proposed SnO2 based H2 gas sensor is fabricated by MEMS technologies such as photolithgraphy, sputtering and lift-off process, etc. Deposited SnO2 thin films are thermally treated in various thermal treatement temperature in range of 500-900 ℃ and their H2 gas detection ability is estimatied by measuring output current of H2 gas sensor. Based on experimental results, fabricated H2 gas sensor with SnO2 thin film which is thermally treated at 700 ℃ has a superior H2 gas detection ability, and it can be expected to utilize at the practical applications.

Design of BOG re-liquefaction system of 20,000 m3 liquid hydrogen carrier

  • Byeongchang Byeon;Hwalong You;Dongmin Kim;Keun Tae Lee;Mo Se Kim;Gi Dock Kim;Jung Hun Kim;Sang Yoon Lee;Deuk Yong Koh
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제25권3호
    • /
    • pp.49-55
    • /
    • 2023
  • This paper presents the design of a re-liquefaction system as a BOG (boil-off gas) handling process in liquid hydrogen transport vessels. The total capacity of the re-liquefaction system was assumed to be 3 ton/day, with a BOR (boil-off rate) of 0.2 %/day inside the cargo. The re-liquefaction cycle was devised using the He-Brayton Cycle, incorporating considerations of BOG capacity and operational stability. The primary components of the system, such as compressors, expanders, and heat exchangers, were selected to meet domestically available specifications. Case studies were conducted based on the specifications of the components to determine the optimal design parameters for the re-liquefaction system. This encompassed variables such as helium mass flow rate, the number of compressors, compressor inlet pressure and compression ratio, as well as the quantity and composition of expanders. Additionally, an analysis of exergy destruction and exergy efficiency was carried out for the components within the system. Remarkably, while previous design studies of BOG re-liquefaction systems for liquid hydrogen vessels were confined to theoretical and analytical realms, this research distinguishes itself by accounting for practical implementation through equipment and system design.

1kW급 고체산화물 연료전지 발전시스템 자열운전 (Self-sustainable Operation of a 1kW class SOFC System)

  • 이태희;최진혁;박태성;유영성
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.57-60
    • /
    • 2008
  • KEPRI has studied planar type SOFC stacks using anode-supported single cells and kW class co-generation systems for residential power generation. A 1kW class SOFC system consisted of a hot box part, a cold BOP part and a water reservoir. A hot box part contains a SOFC stack made up of 48 single cells and ferritic stainless steel interconnectors, a fuel reformer, a catalytic combustor and heat exchangers. Thermal management and insulation system were especially designed for self-sustainable operation. A cold BOP part was composed of blowers, pumps, a water trap and system control units. When a 1kW class SOFC system was operated at $750^{\circ}C$ with hydrogen after pre-treatment process, the stack power was 1.2kW at 30 A and 1.6kW at 50A. Turning off an electric furnace, the SOFC system was operated using hydrogen and city gas without any external heat source. Under self-sustainable operation conditions, the stack power was about 1.3kW with hydrogen and 1.2kW with city gas respectively. The system also recuperated heat of about 1.1kW by making hot water.

  • PDF

합성가스를 연료로 사용하는 고체산화물연료전지-가스터빈 하이브리드 시스템의 탈설계점 성능 특성 (Off-design Performance Characteristics of SOFC-GT Hybrid System Operating with Syngas Fuel)

  • 최정일;손정락;송성진;김동섭
    • 대한기계학회논문집B
    • /
    • 제34권3호
    • /
    • pp.269-274
    • /
    • 2010
  • 가스화기를 장착한 고체산화물연료전지와 가스터빈의 하이브리드 시스템의 사전 연구로서 합성가스에서 수소와 일산화탄소의 구성이 하이브리드 시스템의 성능특성에 미치는 영향을 조사하였다. 이때 다른 구성요소와 다른 발열량을 가진 연료의 특성이 가스터빈의 탈설계점 운전을 유발하여 결과적으로 전체 하이브리드 시스템의 다른 성능 특성을 야기할 것으로 예상된다. 합성가스의 구성요소가 고체산화물연료전지의 성능에 영향을 준다는 것과 일산화탄소를 사용하는 하이브리드 시스템의 성능이 수소를 사용하는 것보다 나쁘다는 것이 발견되었다. 부분부하 성능에서는 수소를 사용하는 경우 부분부하 운전시에 성능 저하가 일산화탄소의 경우보다 더 현저하였다.