• Title/Summary/Keyword: odour removal

Search Result 7, Processing Time 0.016 seconds

Photocatalytic Degradation of Algae and its By-product using Rotating Photocatalytic Oxidation Disk Reactor

  • Son, Hee-Jong;Jung, Chul-Woo;Bae, Sang-Dae
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.170-173
    • /
    • 2009
  • This study examined the special technique of photocatalytic degradation (RPODisk) for removal of taste and odor causing materials, algae, and algal toxin. The RPODisk was effective for removal of these troublesome contaminants. It outperformed the fixed media and the UV irradiation for geosmin removal. The RPODisk performance was comparable to the combination of the UV irradiation with TiO2. The RPODisk performance was affected by the rotating speed. The faster the speed was, the better the performance. The RPODisk was also effective for removal of algae and algal toxin. The algal activity reduced by 80% after 30 mins of the treatment. More toxic microcystin (MC)-LR was more difficult to remove than MC-RR. The times for 50% removal were 23.7 mins for MC-LR and 14.1 mins for MC-RR. Almost 100 mins of the contact time was required to completely remove MC-LR at the rotating speed of 260 rpm.

Ammonia Reduction from Swine Manure Slurry with Additives of Brown Coal and Oak Charcoal (양돈분뇨의 암모니아 저감을 위한 갈탄, 참숯 첨가제의 효능 분석)

  • Hwang, H.S.;Oh, I.H.;Jang, Y.S.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.91-96
    • /
    • 2008
  • The odours from spreading the slurry, manure storage tanks, and the stall are a source of annoyance for the neighbors and sometimes even become a case for civil appeal. Reducing the odourant and ammonia emission is an urgent need to be addressed. It is known that brown coal and oak charcoal have an ability to absorb odour. We designed an experiment set in lab scale and used the brown coal and oak charcoal as additives in the test to reduce odour. The test are divided into two categories; namely aeration and no-aeration. The additives were added to the each sample at a concentration of 5% and 10% of total base solids, besides the control samples. We carried out the Phenate Method for ammonia analyzing. In the non-aerated case, the results showed a reducing efficiency of 23.7% and 26.4% with an addition rate of 5% and 10% of additives, respectively. In the aerated test, the reducing efficiency of ammonia was 17.8% and 21.0% with an addition rate of 5% and 10% of additives, respectively. In case of oak charcoal, non-aeration showed removal efficiencies of ammonia at 15.9% and 16.1% with addition rates of 5% and 10%, respectively, With aeration, they were 11.4% and 26.4% with addition rates of 5% and 10% oak charcoal, respectively. The tests show that brown coal and oak charcoal have a reducing effect on ammonia emissions.

  • PDF

Adsorptive removal of odour substances and NO and catalytic esterification using empty fruit bunch derived biochar

  • Lee, Hyung Won;Kim, Jae-Kon;Park, Young-Kwon
    • Carbon letters
    • /
    • v.28
    • /
    • pp.81-86
    • /
    • 2018
  • Empty fruit bunch (EFB) char was used to remove $NO_x$ and odorous substances. The physicochemical properties of the EFB chars were altered by steam or KOH treatments. The Brunauer-Emmett-Teller surface area and porosity were measured to determine the properties of the modified EFB chars. The $deNO_x$ and adsorption test for hydrogen sulphide and acetaldehyde were performed to determine the feasibility of the modified EFB chars. The KOH-treated EFB (KEFB) char revealed higher $deNO_x$ efficiency than with commercial activated carbon. The Cu-impregnated EFB char also had high $deNO_x$ efficiency at temperatures higher than $150^{\circ}C$. The KEFB char showed the highest hydrogen sulphide and acetaldehyde adsorption ability, followed by the steam-treated EFB char and untreated EFB char. Moreover, the product prepared by sulfonation of EFB char showed excellent performance for esterification of palm fatty acid distillate for biodiesel production.

Reduction of Hydrogen Sulphide in Chicken Manure by Immobilized Sulphur Oxidising Bacteria Isolated from Hot Spring

  • Hidayat, M.Y.;Saud, H.M.;Samsudin, A.A.
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.1
    • /
    • pp.116-124
    • /
    • 2019
  • The rapid development of the poultry industry has led to the production of large amounts of manure, which produce substances like hydrogen sulfide ($H_2S$) that contribute to odor pollution. $H_2S$ is a highly undesirable gas component and its removal from the environment is therefore necessary. Sulfur-oxidizing bacteria (SOB) are widely known to remove contaminating $H_2S$ due to their ability to oxidize reduced sulfur compounds. In this study, three potential SOB (designated AH18, AH25, and AH28) that were previously isolated from a hot spring in Malaysia were identified by 16S rRNA gene analysis. Laboratory-scale biological deodorization experiments were conducted to test the performance of the three isolates-in the form of pure or mixed cultures, with the cells immobilized onto alginate as a carrier-in reducing the $H_2S$ from chicken manure. On the basis of 16S rRNA phylogenetic analysis, isolate AH18 was identified as Pseudomonas sp., whereas isolates AH25 and AH28 were identified as Achromobacter sp. The most active deodorizing isolate was AH18, with an $H_2S$ reduction rate of 74.7% (p < 0.05). Meanwhile, the reduction rates for isolates AH25 and AH28 were 54.2% and 60.8% (p > 0.05), respectively. However, the $H_2S$ removal performance was enhanced in the mixed culture, with a reduction rate of 81.9% (p < 0.05). In conclusion, the three potential SOB isolates were capable of reducing the $H_2S$ from chicken manure in the form of a pure culture immobilized on alginate, and the reduction performance was enhanced in the mixed culture.

Biofiltration of Ammonia Gas from Composting Using Sawdust as Biofilter Media (퇴비화 암모니아 가스의 톱밥 바이오 필터 매체에 의한 생물학적 탈취)

  • Hong Ji Hyung;Park Keum Joo
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.2
    • /
    • pp.107-115
    • /
    • 2003
  • Dairy manure amended with crop and forest residues (moisture 69% wet basis, C/N 22) was composted in a 605 L pilot-scale vessel using continuous air flow (56 L/min) for 19 days. Three pilot-scale sawdust biofilters (moisture 63%, pH 5.0) were built to clean biological waste gas from the composting process. For each methods, two replicated experiments were monitored over a period of three weeks. The system was evaluated to determine the biofilter media depth that would be adequate for compost odour reduction. The compost air cleaning was measured based on ammonia gas concentration before and after passing through the biofilter. Ammonia gas removal efficiency over 3 weeks was 42, 75 and 87% at sawdust biofilter media depth levels of 202, 400 and 600 mm, respectively. Each sawdust biofilter was operated at a moisture content in the range of 60~62% (wb), a temperature from 15 to $25^{\circ}C$, an average pressure drop from 240 to 340 Pa and a detention time from 60 to 180 seconds during the biofiltration process.

Enrichment of poultry manure with biomass ash to produce organomineral fertiliser

  • Dede, Omer Hulusi;Ozer, Hasan
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.449-455
    • /
    • 2018
  • In this study, the contribution of hot biomass ash to enrichment of the mineral content and to reducing the moisture content of broiler poultry manure was investigated. For this purpose, the mixtures have been prepared by adding biomass ash at varying rates (10%, 20%, 30%, 40% and 50%) and at different temperatures ($100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$ and $250^{\circ}C$) according to the dry matter content (74.77%) of the poultry manure. The results showed that incorporation of biomass ash into poultry manure at 50% at $250^{\circ}C$ reduced the moisture content from 25.23% to 9.82%. Regarding the maximum N in the final product, the ideal temperature of biomass ash has been obtained at $150^{\circ}C$. The highest nutrient contents were obtained at 50% biomass ash incorporation. The highest dose of biomass ash application had significantly increased nutrients, such as Ca (19.34%), K (4.03%), Fe (1,545 mg/kg), Mn (812 mg/kg) and Zn (479 mg/kg) in the final organomineral fertiliser formulation. Overall, it was concluded that the addition of hot biomass ash can dramatically decrease the moisture content of poultry manure and therefore provide odour and pathogen removal and increase its plant nutrient content.

Development of Mobile Vortex Wet Scrubber and Evaluation of Gas Removal Efficiency (기체상 유해화학물질 제거를 위한 이동형 와류식 세정장치 개발 및 가스 제거효율 분석)

  • Kwak, Ji Hyun;Hwang, Seung-Ryul;Lee, Yeon-Hee;Kim, Jae-Young;Song, Ki Bong;Kim, Kyun;Kang, Jae Eun;Lee, Sang Jae;Jeon, Junho;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.134-138
    • /
    • 2015
  • BACKGROUND: In recent years, several researchers have focused on odour control methods to remove the harmful chemicals from chemical accidents and incidents. The present work deals with the system development of the hazardous. METHODS AND RESULTS: For on-site removal of hazardous gaseous materials from chemical accidents, mobile vortex wet scrubber was designed with water vortex process to absorb the gas into the water. The efficiency of the mobile vortex wet scrubber was evaluated using water spray and 25% ammonia solution. The inlet air velocity (gas flow rate) was according to the damper angle installed within the hood and with increase of gas flow rate, consequently the absorption efficiency was markedly decreased. In particular, when 25% ammonia solution was exposed to the hood inlet for 30 min, the water pH within the scrubber was changed from 7 to 12. Interestingly, although the removal efficiency of ammonia gas exhibited approximately 80% for 5 min, its efficiency in 10 min showed the greatest decrease with 18%. Therefore, our results suggest that the ammonia gas may be absorbed with the driving force of scrubbing water in water vortex process of this scrubber. CONCLUSION: When chemical accidents are occurred, the designed compact scrubber may be utilized as effective tool regarding removal of ammonia gas and other volatile organic compounds in the scene of an accident.