• Title/Summary/Keyword: octanol

Search Result 178, Processing Time 0.024 seconds

Feasibility of Fibrous Solid Phase Extraction to Alkylphenols Analysis (섬유상 고상 추출물질을 이용한 알킬페놀 화합물 분석 가능성)

  • Jung, Yong Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.3
    • /
    • pp.329-333
    • /
    • 2011
  • p-phenylene-2,5-benzobisoxazole (PBO; Zylon$(R)$) fibers as an adsorbent were employed for solid phase extraction of aqueous alkylphenols. The removal ratios for 10 kinds of alkylphenols at initial concentration of $100{\mu}gL^{-1}$ were in the range of 16.8-96.3% and the removals increased with the increase of the phase ratio (fiber weight/solution volume). The plots of the logarithm of partition coefficient (log K) were correlated with the logarithm of the n-octanol/water partition coefficient (log P). The adsorbed alkylphenols were completely desorbed with the mixture of acetonitrile and dichloromethane.

Adsorption Characteristics for Nitrosamines in Granular Activated Carbon Process (입상활성탄 공정에서의 nitrosamine류 흡착 특성)

  • Kim, Kyung-A;Son, Hee-Jong;Lee, Sang-Won;Bin, Jae-Hoon;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.709-714
    • /
    • 2012
  • This study accessed the adsorption characteristics of the nine nitrosamine species on coal-based granular activated carbon (GAC). The breakthrough appeared first for NDMA and sequentially for NMOR, NPYR, NMEA, NDPA, NDEA, and NPIP. On the other hand, NDBA and NDPHA were not detected in the treated effluent for the operation period. The maximum adsorption capacity (X/M) for the seven nitrosamine species with apparent breakthrough points ranged from $27.5{\mu}g/g$ (for NDMA) to $671.0{\mu}g/g$ (for NPIP). Carbon usage rate (CUR) for NDMA was 1.07 g/day, 13.4 times higher than that for NPIP (0.08 g/day). The X/M values for the seven nitrosamine species were fitted well with a linear regression ($r^2$ = 0.94) by their octanol-water partitioning coefficient ($K_{ow}$).

Study on Physicochemical Properties of Pesticide. (I) Water Solubility, Hydrolysis, Vapor Pressure, and n-Octanol/water Partition Coefficient of Captafol (농약의 물리화학적 특성연구 (I) Captafol의 수용성, 가수분해, 증기압, 옥탄올/물 분배계수)

  • Kim, Jeong-Han;Lee, Sung-Kyu;Kim, Yong-Hwa;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.71-75
    • /
    • 1997
  • Important physicochemical properties of captafol [N-(1,1,2,2-tetrachloro-ethylthio)cyclohex-4-ene-1,2-dicarboximide], water solubility, vapor pressure, hydrolysis and octanol/water partition coefficient(Kow) were measured based on the standard EPA and OECD methods. Water solubility of the chemical was 2.24 ppm at $25^{\circ}C$. Half-life by hydrolysis at $25^{\circ}C$ in the buffer solution of pH 3.0, pH 7.0, and pH 8.0 was 77.8 hr, 6.54 hr and 0.72 hr, respectively, demonstrating instability in alkaline solution. The half-life in acid condition was not significantly different by temperature change, however, that in neutral or alkaline solution became shorter at $40^{\circ}C$. Hydrolysis study with a reference compound, diazinon, proved that the experimental method of the present study is reliable. Vapor pressure of captafol, $8.27{\times}10^{-9}$ torr at $20^{\circ}C$, was calculated from the equation, log P=6.94-(4401.6/T) plotted on the experiment results under different temperature conditions, 40, 50, and $60^{\circ}C$. pressure of captafol, the contamination of captafol would not happen easily in environment by vaporization. High Kow value of 1,523 was observed and this might result in bioconcentration through food chain when captafol was exposed. However, affecting human health through aquatic bioaccumulation is not likely to occur due to its rapid hydrolysis in the environment.

  • PDF

Study on Physicochemical Properties of Pesticides. (II) Water Solubility, Hydrolysis, Vapor Pressure, and Octanol/water Partition Coefficient of Flupyrazofos (농약의 물리화학적 특성 연구 (II) Flupyrazofos의 수용성, 가수분해, 증기압, 옥탄올/물 분배계수)

  • Kim, Jeong-Han;Kim, Yong-Hwa;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.76-79
    • /
    • 1997
  • Several physicochemical properties such as water solubility, vapor pressure, hydrolysis and octanol/water partition coefficient(Kow) of flupyrazofos, the first organophosphorus insecticide developed in Korea, were measured based on EPA and OECD methods. Water solubility was low showing 0.80 ppm at $25^{\circ}C$ and in hydrolysis study, half-life at $25^{\circ}C$ was 266.5 hr(pH 4.0), 180.0 hr(pH 7.0) and 120.9 hr(pH 9.0) demonstrating instability in alkaline solution. At $40^{\circ}C$ hydrolysis rate was $2{\sim}4$ times higher than that at $25^{\circ}C$. The equation log P=0.673-(1565.4/T) was obtained from vapor pressure experiments at three different temperatures (25, 35, $45^{\circ}C$) and $2.81{\times}10^{-5}$ torr was obtained at $25^{\circ}C$. This value is similar to that of diazinon and 1,000 times lower than that of DDVP suggesting it would not give environmental contamination by volatilization. High log Kow(5.24) was observed and this might result in bioconcentration through food chain. However, its possibility is not likely to be high due to its relatively rapid hydrolysis.

  • PDF

Effect of Cosurfactant on Solubilization of Hydrocarbon Oils by Pluronic L64 Nonionic Surfactant Solution (보조계면활성제가 Pluronic L64 비이온 계면활성제에 의한 탄화수소 오일 가용화에 미치는 영향)

  • Bae, MinJung;Kim, DoWon;Cho, Seo-Yeon;Lim, JongChoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.219-225
    • /
    • 2014
  • In this study, effect of cosurfactant on the solubilization rate of n-octane, n-decane and n-dodecane oil was performed by micellar solutions of polymeric nonionic surfactant Pluronic L64($EO_{13}PO_{30}EO_{13}$) at room temperature. It has been found that the solubilization rate of a hydrocarbon oil was enhanced with an increase in both chain length and amount of alcohol added. In case of addition of a short chain alcohol such as 1-butanol, the solubilization rate of a hydrocarbon oil was slightly increased since most of alcohol molecules remained in an aqueous surfactant solution. On the other hand, the addition of a relatively long chain alcohol such as 1-hexanol and 1-octanol produced a big increase in solubilization rate of a hydrocarbon oil mainly due to incorporation of alcohol molecules into micelles and thus producing more flexible micellar packing density. Dynamic interfacial tension measurements showed the same trend found in solubilization rate measurement. Both interfacial tension value at equilibrium and time required to reach equilibrium decreased with an increase in chain length of an alcohol.

Insecticidal Activity of Spearmint Oil against Trialeurodes vaporariorum and Bemisia tabaci Adults (온실가루이와 담배가루이에 대한 Spearmint Oil의 살충활성)

  • Choi Yu-Mi;Kim Gil-Hah
    • Korean journal of applied entomology
    • /
    • v.43 no.4 s.137
    • /
    • pp.323-328
    • /
    • 2004
  • These studies were carried out to investigate the fumigation and contact toxicities of spearmint oil (Mentha spicata) against adults of greenhouse whitefly, Trialeurodes vaporariorum and sweet-potato whitefly, Bemisia tabaci. And we carried out the constituent analysis of spearmint oil using gas chromatograph (GC) and gas chromatograph mass spectrometry (GC/MS). Spearmint oil showed $99.1\%,\;91.7\%,\;41.1\%$ fumigation toxicity against T. vaporariorum adults at $10{\mu}L/954mL,\;5{\mu}L/954mL,\;1{\mu}L/954mL$ air concentration, respectively. In case of B. tabaci adults, spearmint oil showed $100\%,\;100\%,\;61.3\%$ fumigation toxicity, respectively. However, spearmint oil showed < $30\%$ contact toxicity against adults of T. vaporariorum and B. tabaci. Through the constituent analysis using GC and GC/MS, we confirmed main constituents of spearmint oil were limonene ($16.1\%$), ${\gamma}$-terpinene($13.8\%$), ${\rho}$-cymene($5.8\%$), 3-octanol($6.9\%$), carvone($40.9\%$). Carvone, major constituent of spearmint oil, also showed $100\%$ fumigation toxicity at $10{\mu}L/954mL$ air concentration.

Volatile Flavor Compounds in Omandungi (Styela plicata)-Doenjang (Soybean paste) Soups and stew by Cooking (가열조리한 오만둥이된장찌개의 휘발성 향기성분)

  • Jeong, Eun-Jeong;Cho, Woo-Jin;Cha, Yong-Jun
    • Journal of Life Science
    • /
    • v.18 no.11
    • /
    • pp.1570-1577
    • /
    • 2008
  • For useful basic data in developing of Omandungi (Styela plicata) processed products, volatile flavor compounds were analyzed to identify the key reaction flavor compounds induced through heat treatment ($100^{\circ}C$, 10 min) in Omandungi -Doenjang (soybean paste) soups and stew. A total of 128 flavor compounds were identified and composed mainly of esters (16), aromatic compounds (14), N-containing compounds (11), alcohols (34), terpenes (5), carbonyl compounds (23), furans (4), hydrocarbons (13), acids (5) and miscellaneous compounds (3). Three groups including aromatic compounds, alcohols and acids were detected in high amounts in Doenjang. However, the levels of C4-C6 series acids (i.e., pentanoic acid having off-flavor) decreased by cooking ($100^{\circ}C$, 10 min), whereas that of furans (i.e., furfural) as heat induced compounds increased 2 times. Alcohols were detected the major group in Omandungi and followed by hydrocarbons and aromatic compounds in that order. In particular, 3 compounds including decenol, 2,6-dimethylheptanol and octanol were the major alcohols of Omandungi. By cooking, the compounds known heat-induced compound, 2-acetyl-2-thiazoline and benzothiazole, were newly formed in Omandungi-Doenjang stew. The alcohols (i.e., decenol, 2,6-dimethylheptanol), hydrocarbons and aromatic compounds derived from Omandungi were supposed to enhance a seafood-like flavor in Omandungi-Doenjang stew.

A Study on the Development of Analytical Methods and Behaviors of Environmental Pollutants ( I ) : Elution Behavior of Monosubstituted Phenols and Benzenes by Micellar Reversed-Phase Liquid Chromatography (환경 오염물질의 정량법 개발과 거동에 관한 연구 ( I ) : 미셀 역상 액체 크로마토그래피에서 페놀과 벤젠 일치환체들의 용리거동)

  • Lee, Dai Woon;Bang, Eun Jung;Cho, Byung Yun
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • The purpose of this study is to investigate the elution behavior of monosubstituted phenols and benzenes in micellar liquid chromatographic system, $C_{18}$ column-anionic surfactant, sodium dodecyl sulfate(SDS). The partition coefficients between the micellar pseudophase-water and modified stationary phase-water are calculated by the relationship between solute retention and micellar mobile phase(SDS) composition. The free energy of transfer of solute from water to micelle is also calculated from these values. There is a direct correlation between the hydrophobicity parameters in MLC and corresponding partition data for 1-octanol-water, which indicates that the hydrophobicity of molecules plays an important role in the partition for both systems and that quantitative structure activity relationships(QSAR) are available from studies on micellar partition. The other purpose of this study is to investigate methylene selectivity of alkyl homologous series through correlation between retention and the number of carbons. The correlation between hydrophobicity parameters in MLC and 1-octanol-water partition data was also observed when n-propanol was as a modifier in the mobile phase.

  • PDF

Volatile Flavor Constituents of the Low-Salt Fermented Ascidian (저염 우렁쉥이 젓갈의 휘발성성분)

  • Hwang, Seok-Min;Kim, Yeong-A;Ju, Jong-Chan;Lee, So-Jeong;Choi, Jong-Duck;Oh, Kwang-Soo
    • Journal of agriculture & life science
    • /
    • v.45 no.6
    • /
    • pp.141-150
    • /
    • 2011
  • In order to elucidate a flavor characteristics of the low-salt fermented ascidian (LFA), a volatile flavor constituents were extracted and analyzed by SDE apparatus and GC/MS. Salinity, pH and volatile basic nitrogen of the LFA were 8.0%, 5.17 and 23.0 mg/100 g, respectively. Total content of volatile flavor compounds identified from the LFA was $1,221.42{\mu}g/100g$ as cyclohexanol (internal standard), it were composed of 23 alcohols ($644.85{\mu}g/100g$) such as 1-octanol and 2-pentanol, 16 acids ($293.91{\mu}g/100g$) such as 2-hydroxy-propanoic acid and butanoic acid, 15 aldehydes ($153.61{\mu}g/100g$) such as trans-2-hexanal and benzaldehyde, 29 hydrocarbons ($97.65{\mu}g/100g$) such as 1,4-dimehyl-cyclooctane and 1-nonene, six aromatic compounds ($6.20{\mu}g/100g$), two esters ($2.07{\mu}g/100g$), two nitrogen-containing compounds ($19.09{\mu}g/100g$) and three micellaneous compounds ($4.04{\mu}g/100g$).

Characteristics of Dust Explosion in Dioctyl Terephthalic Acid Manufacturing Process (디옥틸테레프탈산 제조공정에서 분진폭발 특성에 관한 연구)

  • Lee, Chang Jin;Kim, Lae Hyun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.6
    • /
    • pp.790-803
    • /
    • 2019
  • The dioctyl terephthalic acid (DOTP) process produces plastic plasticizers by esterification of terephthalic acid with powder in the form of octanol. In this study, the dust explosion characteristics of terephthalic acid directly injected into the manhole in the form of powder in the presence of flammable solvent or vapor in the reactor of this process were investigated. Dust particle size and particle size distribution dust characteristics were investigated, and pyrolysis characteristics of dust were investigated to estimate fire and explosion characteristics and ignition temperature. Also, the minimum ignition energy experiment was performed to evaluate the explosion sensitivity. As a result, the average particle size of terephthalic acid powder was $143.433{\mu}m$. From the thermal analysis carried out under these particle size and particle size distribution conditions, the ignition temperature of the dust was about $253^{\circ}C$. The lower explosive limit (LEL) of the terephthalic acid was determined to be $50g/m^3$. The minimum ignition energy (MIE) for explosion sensitivity is (10 < MIE < 300) mJ, and the estimated minimum ignition energy (Es) based on the ignition probability is 210 mJ. The maximum explosion pressure ($P_{max}$) and the maximum explosion pressure rise rate $({\frac{dP}{dt}})_{max}$ of terephthalic acid dust were 7.1 bar and 511 bar/s, respectively. The dust explosion index (Kst) was 139 mbar/s, corresponding to the dust explosion grade St 1.