• Title/Summary/Keyword: octanoate

Search Result 35, Processing Time 0.023 seconds

High Cell Density Cultivation of Pseudomonas oleovorans for the Production of Poly(3-Hydroxyalkanoates)

  • Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.1 no.1
    • /
    • pp.51-53
    • /
    • 1996
  • Fed-batch culture of Pseudomonas oleovorans was carried out for the production of medium-chain-length polyhydroxyalkanoates (MCL-PHAs) using octanoate as a carbon source. Octanoate and the salt solution containing ammounium sulfate and magnesium sulfate were intermittently fed in the course of fermentation. Cell mass and PHA concentrations of 42.8 and 16.8g/L, respectively, could be obtained in 40 h. The PHA content and the PHA productivity were 39.2% and 0.42 g PHA/L-h, respectively. The yields of cell mass and PHA were 0.71 g dry cell mass/g octanoate and 0.28g PHA/g octanoate, respectively. Therefore, octanoate can be used for the production of MCL-PHAs to a high concentration with high productivity.

  • PDF

Oxidation Mechanism of Methyl Linoleate with ${\alpha}-Tocopherol$ (${\alpha}-Tocopherol$이 첨가된 Methyl Linoleate의 산화물 생성 기구)

  • Kim, Jeong-Sook;Lee, Gee-Dong;Kwon, Joong-Ho;Yoon, Hyung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.614-619
    • /
    • 1993
  • Oxidation mechanisms of methyl linoleate with ${\alpha}-Tocopherol$(TML) were investigated by determining oxidized products using GC-MS during oxidation at $37^{\circ}C$ for 9 days. Oxidized products of TML were found to be methyl octanoate, methyl-8-(2-furyl)-octanoate, 9,13-trans, cis isomer and 9,13-trans, trans isomer. In previous report, oxidation products of methyl linoleate(ML) were methyl-8-(2-furyl)octanoate, 9,13-trans, cis hydroperoxide isomer, 9,13-trans, trans hydroperoxide isomer, and 9-TMSO-12,13-epoxy-10-octadecenoate. In the case of ML, 9-TMSO-12,13-epoxy-l0-octadecenoate was produced instead of methyl octanoate in TML. ${\alpha}-Tocopherol$ quinone, as a major oxidized product of ${\alpha}-Tocopherol$ was formed at the 6th day of oxidation. ${\alpha}-Tocopherol$ quinone was produced rather quickly in lipid media than aqueous media. In oxidation of methyl linoleate, it was shown that the first oxidized product was methyl-9,13-hydroxy-octadecadienoate. As second products, methyl-8-(2-furyl)-octanoate, 9-TMSO-12,13-epoxy-10-octadenoate, and methyl octanoate were oxidized from methyl-9-hydroxy-10-trans, 12-trans-octadecadienoate.

  • PDF

Isolation of Pseudomonas putida BM01 Accumulating High Amount of $PHA_{MCL}$

  • Song, Jae-Jun;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.4 no.2
    • /
    • pp.126-133
    • /
    • 1994
  • A Pseudomonas putida strain able to accumulate high amount of polyesters of medium-chain-length 3-hydroxyalkanoic acids ($PHA_{MCL)$) was isolated from soil in a landfill site using an enrichment technique. Culture condition of the isolated strain for polyester production in a one-step culture was optimized in a mineral-salts medium against pH and concentrations of ammonium sulfate, carbon source(e.g., octanoate), and phosphate. The optimal values for maximal cell growth and PHA accumulation were: pH; 7$\sim$8, $(NH_4)_2SO_4$; 8 mM, octanoate; 40 mM. The optimum temperature was in the range of $20\sim30^{\circ}C$, which was rather broader than in other bacteria. Cell growth was strongly inhibited by the phosphate limitation to less than 1 mM. An increase of phosphate concentration above 1 mM showed little effect on cell growth and polyester accumulation. When the strain was grown on octanoate under this optimized condition it produced 3.4 g dry biomass per liter and yielded 1.7 g PHA per liter amounting to 53 wt% of dry cells. The monomer units composing the polyester synthesized from octanoate were 3-hydroxyoctanoate (3HO), 3-hydroxycaproate (3HC), and 3-hydroxybutyrate (3HB) (85:13:2, mole ratio). Other low linear $C_3\simC_{10}$ monocarboxylic acids were also tested for polyester production.

  • PDF

Antioxidative Effectiveness and Oxidized Products in Mixture of Methyl Linoleate and Phenolic Compounds (Methyl Linoleate에 대한 Phenol성 물질의 항산화성과 산화 생성물)

  • Kim, Jeong-Sook;Lee, Gee-Dong;Kwon, Joong-Ho;Yoon, Hyung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.379-385
    • /
    • 1993
  • Antioxidative effectiveness and oxidized products in mixture of methyl linoleate(ML) and phenolic compounds were investigated under oxygen blowing at $37^{\circ}C$ for 9 days. Caffeic acid (3,4-dihydroxy cinnamate ; CML) and phloroglucinol(1,3,5-trihydroxy benzene ; PML) showed higher antioxidative effectiveness for methyl linoleate than 0.05% ${\alpha}-tocopherol$ (TML). Oxidized products in ML group were methyl 8-(2-furyl)-octanoate, 9,13-trans, cis hydroperoxide isomer, 9,13-trans, trans hydroperoxide isomer, and 9-TMSO-12,13-epoxy-10-octadecenoate. In CML group the oxidized products were methyl-8-(2-furyl)-octanoate, 9-trans, cis hydroperoxide isomer and 9-trans, trans hydroperoxide isomer, but 13-hydroxy isomer was not identified. It was shown that CML were oxidized more slowly than ML group and at 6th day of oxidation, caffeic quinone was found to be major oxidized product of caffeic acid. Oxidixed Products in PML group were methyl-8-(2-furyl)-octanoate, 9-trans, cis hydroperoxide isomer, and 9-trans, trans hydroperoxide isomer but phloroglucinol was not oxidized even at the 9th day of reaction.

  • PDF

The Crystal and Molecular Structure of Cholesteryl Hexanoate at Room and Low Tempreature (Cholesteryl Hexanoate의 실온 및 저온에서의 분자 및 결정구조)

  • Young Ja Park;B. M. Craven
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.3
    • /
    • pp.131-139
    • /
    • 1981
  • Cholesteryl hexanoate $(C_{33}H_{56}O_2)$, is monoclinic, space group $P2_1$, with a = 12.162(3), b = 9.314(3), c = 13.643(5) ${\AA}$, ${\beta}$ = $93. 55{\circ}(3)$ and two molecules per unit cell. The atomic coordinates from cholesteryl octanoate were used in an initial trial structure using X-ray intensities(Mo $K{\alpha}$ radiation) measured by a diffractometer at room temperature and $-75{\circ}C$. Structure refinement by block-diagonal least squares gave R = 0.129 and 0.105 for room and low temperature experiments respectively. The molecules are arranged in monolayers with their long axes antiparallel and severely tilted. There is a close packing of cholesteryl groups within the monolayers. The crystal structures is very similar to those of cholesteryl octanoate and cholesteryl oleate.

  • PDF

Structure of Cholesteryl Pentyl Carbonate (Cholesteryl Pentyl Carbonate의 결정 및 분자구조)

  • Seo, Hye Ran;Park, Yeong Ja;B. M. Craven
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.29-36
    • /
    • 1990
  • Cholesteryl pentyl carbonate $(C_{33}H_{56}O_3)$ is monoclinic, space group P21, with a = 12.484(3), b = 9.043(3), c = 14.053(3)$\AA$, ${\beta} = 94.12(2)^{\circ}$ and z = 2. The intensity data were measured for the 2969 reflections within sin $\theta/\lambda = 0.52 {\AA}^{-1}$, using an automatic four--circle diffractometer and graphite monochromated Mo-K$\alpha$ radiation. The atomic coordinates from cholesteryl octanoate were used in an initial trial structure and the structure was refined by full-matrix least squares methods. The final R-factor was 0.12 for 1164 observed reflections. The pentyl group has shortened bond lengths due to the high thermal vibrations in this region. Adjacent molecules are related by $2_1$ screw axis so that they are arranged in an antiparallel array, corresponding to the Monolayer Type II packing mode. There are close packings of cholesteryl groups within the monolayers. This packing type is similar to those of cholesteryl hexanoate, octanoate, hexyl carbonate and oleate.

  • PDF

Substrate-Perfusion Studies on Coronary Circulation and Myocardial Energy Metabolism in Spontaneously Hypertensive Rat Hearts (발현성 고혈압쥐의 관상순환 기능과 심장근의 에너지 대사에 관한 생체외 에너지원의 관류 연구)

  • 김은지
    • Journal of Nutrition and Health
    • /
    • v.28 no.2
    • /
    • pp.115-126
    • /
    • 1995
  • The effects of energy-yielding substrates on coronary circulation, myocardial oxygen metabolism, and intramyocytic adenylates of perfused Wistar control rat(WC) and spontaneously hypertensive rat(SHR) hearts were examined under basal and $\beta$-adrenergic stimulation conditions. The perfusion medium (1.0mM Ca2+) contained 5mM glucose (+5U/l insulin) in combination with 5mM pyruvate, 5mM lacate, 5mM acetate, or 5mM octanoate as energy substrates. Hearts were perfused with each substrate buffer for 20min under basal conditions. Coronary functinal hyperemia was induced by infusing for 20min isoproterenol (ISO, 1uM), a $\beta$-receptor agonist. Cardiac adenylates, glycolytic intermediates, and coronary venous lactate were measured by using an enzymatic analysis technique. Under basal conditions, acetate and octanoate significantly increased coronary flow(CF) of WC in parallel with myocardial oxygen consumption. However, CF of SHR was partly attenuated by coronary vasoconstriction despite metabolic acidosis. In addition, pyruvate and lactate depressd ISO-induced coronary functional hyperemia in SHR. It should be noted that octanoate exhibited coronary dysfunction under ISO conditions. On the other hand, fat substrates depleted myocardial high energy phosphate pool and accumulated breakdown intermediates. In SHR with coronary vasoconstriction under basal conditions, and with depressed coronary functional hyperemia, high energy phosphates were greatly depleted. These results suggest that energy substrates in the myocardium and coronary smooth muscle alter remarkably coronary circulation, and that coronary circulatory function is associated with a reserve of high energy phosphates and a balance between breakdown and nono synthesis of energy phosphates. These findings could be explained by alterations in the cytosolic redox state manipulated by LDH and hence in the cytosolic phosphorylation potential, which might be involved in hypertension of SHR.

  • PDF

Studies on Mixed Micellizations of Sodium Dodecanoate and Sodium Octanoate by Means of Electric Conductivity and Light Scattering (전기 전도도 및 광산란법에 의한 나트륨 도데카노에이트와 나트륨 옥타노에이트의 혼합미셀화 연구)

  • Park, Il Hyun;Jang, Han Woong;Baek, Seung Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.4
    • /
    • pp.271-279
    • /
    • 2015
  • The critical micelle concentration (CMC), the counter ion binding constant (B) and the aggregation number (N* ) for the mixed micellization of sodium dodecanoate and sodium n-octanoate as two anionic surfactants have been investigated by means of electric conductivity and light scattering. As its experimental results are found to be deviated from ideal mixed model, thus two different kinds of regular solution models such as Rubingh and Motomura are used for interpreting our experimental data. The stability of the mixed micelles has been confirmed from the negative values of the standard Gibbs energy of mixed micellization ΔGmicel,0 over all compositions and the measured values of ΔGmicel,0 agreed with the theoretical ones within the experimental error.

Mixed Micellar Properties of Sodium n-Octanoate(SOC) with n-Octylammonium Chloride(OAC) in Aqueous Solution (Sodium n-Octanoate(SOC)와 n-Octylammonium Chloride(OAC)의 혼합마이셀화에 관한 연구)

  • Lee, Byeong Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.6
    • /
    • pp.495-501
    • /
    • 2002
  • The critical micelle concentration(CMC) and the counterion binding constant(B) for the mixed micel-lization of sodium n-octanoate(SOC) with n-octylammonium chloride(OAC) were determined as a function of the overall mole fraction of $SOC({\alpha}_1).$ Various thermodynamic parameters($x_i$, $Y_i$, $C_i$, $${\alpha}_i^M$$, and $\Delta$$H_{mix}$) for the mixed micellization of the SOC/OAC systems have been calculated and analyzed by means of the equations derived from the nonideal mixed micellar model. The results show that there are great deviations from the ideal behavior for the mixed micellization of these systems. And other thermodynamic parameters(${\Delta}$$G^0_m$, ${\Delta}$$H^0_m$, and ${\Delta}$$S^0_m$) associated with the micellization of SOC,OAC, and their $mixture({\alpha}_1=0.5)$ have been also estimated from the temperature dependence of CMC and B values, and the significance of these parameters and their relation to the theory of the micelle formation have been considered and analyzed by comparing each other.

Characteristics of Volatile Compound Adsorption from Alcoholic Model Solution onto Various Activated Carbons (알코올모델용액을 이용한 여러 종류 활성탄의 휘발성화합물 흡착특성)

  • Park, Seung-Kook;Lee, Myung-Soo;Kim, Byung-Ho;Kim, Dae-Ok
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.249-255
    • /
    • 2010
  • Ten commercial activated carbons (ACs) prepared from four different sources (bamboo, wood, peat, and coal) were evaluated for their adsorptive efficiency of six volatile compounds (isoamyl alcohol, hexanal, furfural, ethyl lactate, ethyl octanoate, 2-phenyl ethanol) which were dissolved in a 30% alcoholic model solution. These six volatile compounds are frequently found in alcoholic beverages and possibly contribute to physiological hangover due to their high concentrations. They are also generally regarded as off-flavor compounds at certain levels in alcoholic beverages such as whisky and vodka. Two hundred mL of 30% alcoholic solutions containing these six volatile compounds were treated with 0.2 g of ACs while stirring for 16 hr; the treated solutions were then measured for their adsorptive efficiencies (or removal efficiencies) by gas chromatographic analysis using two different sampling methods (direct liquid injection and headspace-solid phase microextraction). The adsorptive efficiencies of the ACs varied depending on the identity of the volatile compounds and the source material used for making the ACs. Ethyl octanoate, 2-phenyl ethanol, and hexanal were removed at high efficiencies (34-100%), whereas isoamyl alcohol, ethyl lactate, and furfural were removed at low efficiencies (5-13%). AC prepared from bamboo showed a high removal efficiency for isoamyl alcohol, aldehydes (hexanal and furfural), and 2-phenyl ethanol; these major fusel oils have been implicated as congeners responsible for alcohol hangover.