• Title/Summary/Keyword: ochratoxin A

Search Result 97, Processing Time 0.026 seconds

Survey of Mycotoxin Contamination in Grains and Grain Products (곡류 및 곡류가공품 중 곰팡이독소 오염도 조사 연구)

  • Yang, Yongshik;Lee, Hyang Hee;Kim, Ae Gyeong;Ryu, Keun Young;Choi, Su Yeon;Seo, Doo Ri;Seo, Kye Won;Cho, Bae Sik
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.2
    • /
    • pp.205-211
    • /
    • 2019
  • This study surveyed mycotoxin contamination in grains and grain products, which were purchased from supermarkets and traditional markets from October 2017 to September 2018 in Gwangju (Metropolitan City). A total of 127 samples including adlay, sorghum, millet, rice, oats, barley, buckwheat, corn as grains, and rice flour, buckwheat flour, roasted barley and corn, as grain products were surveyed. The tested mycotoxins were aflatoxin ($AFB_1$, $AFB_2$, $AFG_1$, $AFG_2$), fumonisin ($FUB_1$, $FUB_2$), ochratoxin A (OTA), and zearalenone (ZON). Mycotoxins were analyzed simultaneously with a UPLC-tandem mass spectrometry method. Fumonisin ($B_1+B_2$) was detected at the range of $4.8{\sim}738.5{\mu}g/kg$ in 35 samples and zearalenone at $8.4{\sim}507.6{\mu}g/kg$ in 20 samples, respectively. No other mycotoxins were detected. Risk assessment was evaluated by using estimated daily intake (EDI) and provisional maximum tolerable daily intake (PMTDI) in accordance with the Joint FAO/WHO Expert Committee on Food Additives (JECFA). When the hazard index (HI) was expressed as $(EDI/PMTDI){\times}100$, the HI (%) showed in the range of 0.0019~1.9526%. Based on these results, mycotoxin concentrations in the grains and grain products were within safe levels.

Administration of Mycotoxins in Food in Korea (식품 중 곰팡이독소 안전기준 관리)

  • Kang, Kil-Jin;Kim, Hye-Jung;Lee, Yeon-Gyeong;Jung, Kyung-Hee;Han, Sang-Bae;Park, Sun-Hee;Oh, Hye-Yeong
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.4
    • /
    • pp.281-288
    • /
    • 2010
  • Total aflatoxin ($B_1+B_2+G_1+G_2$) maximum levels of 15 ${\mu}g/kg$ ($B_1=10\;{\mu}g/kg$) were set for grain, beans, peanut, nuts & their processed food (grinding, cutting etc.), processed cereal product & processed bean product, confectionaries (peanut or nut-containing food), soybean paste, red pepper paste, dried red pepper, processed com products for popcorn and steamed rice. The maximum levels for aflatoxin $M_1$ are 0.5 ${\mu}g/kg$ for raw milk and milks before manufacturing processing. The patulin maximum level is 50 ${\mu}g/kg$ in apple juice and apple juice concentrate (including concentrate to use as raw material and converted by concentration multiple). The ochratoxin A is managed at the maximum levels of 5 ${\mu}g/kg$ in wheat, barley, rye, coffee beans and roasted coffee, 10 ${\mu}g/kg$ in instant coffee and raisin, 2 ${\mu}g/kg$ in Grape juice, concentrated grape juice as reconstituted and wine. The fumonisins ($B_1+B_2$) maximum levels are 4000 ${\mu}g/kg$ in com, 2000 ${\mu}g/kg$ in com processed food (grinding, cutting etc.) and com powder, 1000 ${\mu}g/kg$ in processed com products. Standards for mycotoxins in food have been established and the mycotoxin risk in food is managed reasonably and scientifically, based on risk assessment and exposure analysis.

Corn Cultivation to Reduce the Mycotoxin Contamination (곰팡이 독소 오염 경감을 위한 옥수수 재배법)

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Jung, Jingyo;Heu, Sunggi;Shim, Hyeong Kwon
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.256-261
    • /
    • 2017
  • The effects of insecticide and fungicide treatment were investigated to reduce mycotoxin contamination of corn (Zea mays L.) seeds. Deoxynivalenol and zearalenone contents were reduced in the treated seeds, but aflatoxin, ochratoxin A, fumonisin, and T-2 toxin were not effective by chemical treatments. The chemical treatment did not affect the growth of saprophyte, but inhibited the pathogenic fungi such as Fusarium verticillioides, F. graminearum and F. equiseti. Myotoxin contents at different harvesting time were compared. As the harvest time was delayed, both levels of deoxynivalenol and zearalenone and frequency of Fusarium spp. increased. However, the major nutrient contents of corn seeds were not affected by harvesting period. These results show that chemical treatments are necessary to reduce the fungal contamination of corn and harvest without delay is important as well.

Survey of Fungal Infection and Fusarium Mycotoxins Contamination of Maize during Storage in Korea in 2015 (2015년 국내산 저장 옥수수에서의 후자리움 독소 오염 및 감염 곰팡이 조사)

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Heu, Sunggi;Shim, Hyeong Kwon
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.278-282
    • /
    • 2017
  • Maize is one of the most cultivated cereals as a staple food in the world. The harvested maize is mainly stored after drying, but its quality and nutrition could be debased by fungal spoilage and mycotoxin contamination. In this study, we surveyed mycotoxin contamination fungal infection of maize kernels that were stored for almost one year after harvest in 2015. The amount of deoxynivalenol and zearalenone detected were higher than the other mycotoxin, such as aflatoxin, ochratoxin, fumonisin and T-2 toxin. In particular, level of deoxynivalenol was detected as $1200{\pm}610{\mu}g/kg$ in small size kernels, which was four to six times higher than the large and the medium size kernels. Moreover, the amount of deoxynivalenol, zearalenone, and fumonisin were increased with discolored kernels. 10 species including Fusarium spp., Aspergillus spp. and Penicillium spp. were isolated from the maize kernels. F. graminearum was predominant in the discolored kernels with detection rates of 60% (red) and 40% (brown). Our study shows that the mycotoxin contents of stored maize can be increased by discolored maize kernels mixed. Therefore elimination of the contaminated maize kernels will help prevent fungal infection and mycotoxin contamination in stored maize.

Prioritizing Management Ranking for Hazardous Chemicals Reflecting Aggregate Exposure (통합노출을 고려한 유해물질 관리의 우선순위 선정)

  • Jeong, Ji-Yoon;Jung, Yoo-Kyung;Hwang, Myung-Sil;Jung, Ki-Kyung;Yoon, Hae-Jung
    • Journal of Food Hygiene and Safety
    • /
    • v.27 no.4
    • /
    • pp.349-355
    • /
    • 2012
  • In this study, we configured a system which ranks hazardous chemicals to determine their management priorities based on experts' opinions and the existing CRS (chemical ranking and scoring). Aggregate exposure of food, health functional food, oriental/herbal medicine and cosmetics have been taken into account to determine management priority. In this study, 25 hazardous chemicals were selected, such as cadmium, lead, mercury, and arsenic, etc. These 25 materials were ranked according to their 1) risk (exposure or hazard) indexes, 2) exposure source-based weight, and 3) public interests, which were also formed based on the existing priority ranking system. Cadmium was scored the highest (178.5) and bisphenol A the lowest (56.8). Ten materials -- cadmium, lead, mercury, arsenic, tar, acrylamide, benzopyrene, aluminium, benzene, and PAHs -- scored higher than 100. Eight materials -- aflatoxin, manganese, phthalate, chromium, nitrate/nitrite, ethylcarbamate, formaldehyde, and copper -- recorded scores in the range from 70 to 100. Also evaluated as potential risks were 7 materials; sulfur dioxide, ochratoxin, dioxins, PCBs, fumonisin, methyl mercury, and bisphenol A, and these materials were scored above 50. Then we compared risk index and correlation coefficient of total scores to confirm the validity of the total scores; we analyzed correlation coefficient of parameter and indicator. We discovered that the total score and weight, which has incorporated public interests, were high and statistically significant. In conclusion, the result of this study contributes to strengthening risk assessment and risk management of hazardous chemicals.

Influence of Gamma-Irradiation on the Growth of Aspergillus spp. on Feeds for Ensuring Feed Safety (사료의 안전성 확보를 위한 Aspergillus속 곰팡이의 생육에 대한 감마선 조사 효과)

  • Nam, Bo-Ram;Kim, Kyeong-Yeol;Ryu, Hee-Jeong;Nam, Min-Ji;Shim, Won-Bo;Yoon, Yo-Han;Kim, Jae-Hun;Lee, Ju-Woon;Byun, Myung-Woo;Chung, Duck-Hwa
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.3
    • /
    • pp.317-322
    • /
    • 2010
  • Aspergillus spp. is widely spread in the world on feeds and foods. They have been known to produce aflatoxins, which are mutagenic and carcinogenic to humans. The objective of this study was to determine the optimum gamma-irradiation dose for controling the growth of Aspergillus spp. to ensure safety of feeds. Four species fungal spore ($10^7$ spore/mL) exposed to 0, 1, 3, 5, 7 and 10 kGy of gamma radiation were inhibited in their growth and $AFB_1$ productivity by ${\geq}5\;kGy$. Meantime, the growth of fungal inoculated on feeds was inhibited at ${\geq}3\;kGy$. However, $AFB_1$ presented in aqueous solution was not be inactivated completely by ${\leq}10\;kGy$ irradiation. These results indicate that Aspergillus spp. on feeds could be controlled by 5 kGy gamma-irradiation but detoxification of $AFB_1$ demands a higher dose of gamma-irradiation (${\geq}10\;kGy$).

Safety Evaluation of Snacks and Drinks in Circulation for Infants and Toddlers (유통 영유아용 과자류 및 음료류의 안전성 평가)

  • Jaerin Lee;Hyemin Park;Keunyoung Ryu;Keunyoung Ryu;Suyeon Choi;Eunhye Cho;Baesik Cho;Jinhee Kim
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.3
    • /
    • pp.99-111
    • /
    • 2023
  • The purpose of this study was to provide basic data for setting more detailed standards for baby food and to provide food information that can be used in real-world settings. We purchased 80 snacks and 40 drinks for infants and toddlers from supermarkets and online markets and analyzed tar color, artificial sweeteners, mycotoxins, and nutritional components (e.g., sucrose, sodium, and calcium). Fortunately, it was confirmed that both tar color and sodium saccharin, which do not have detection criteria for labeled foods for infants and toddlers, were not detected. However, acesulfame potassium was detected at 0.07 g/kg in one snack sample. As for myxotoxins, aflatoxin (B1, B2, G1, and G2) and ochratoxin A were not detected. Fumonisin B1, fumonisin B2, and zearalenone were detected in the ranges of 9.78-78.94 ㎍/kg, 5.58-11.73 ㎍/kg, and 2.96-8.83 ㎍/kg, respectively, but only in snacks. Sucrose was detected in 65 of the snacks (0.02-40.94 g/net weight [g]) and in 24 of the drinks (0.12-27.60 g/net weight [g]). Minerals were detected in most of the samples, and in four snacks, the zinc content per net exceeded the tolerable upper intake level for infants. Sixteen snacks exceeded the food standards for sodium content for infants and toddlers, but none of them were labeled as food for infants and toddlers in the product manufacturing report, such that the corresponding standards could not be applied. Therefore, it seems necessary to establish institutional improvements, such as strengthening labeling standards, so that the currently enforced standards can be appropriately applied, and establishing standards for labeled foods for infants and toddlers.