• Title/Summary/Keyword: ocean eco-system

Search Result 78, Processing Time 0.023 seconds

A Study of Thermo-Mechanical Analysis for the Design of High Pressure Piping System for Natural Gas Fuel Vessel (천연가스 연료선박의 고압 이중 배관 설계를 위한 열-구조 해석에 관한 연구)

  • Park, Seong-Bo;Sim, Myung-Ji;Kim, Myung-Soo;Kim, Jeong-Hyeon;Lee, Jae-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.425-431
    • /
    • 2015
  • LNG (liquefied natural gas) is considered the best alternative eco-fuel, and many studies on the LNG fuel system have been performed to use LNG as the fuel for ships. For the LNG fuel supply system, natural gas transfers from the vaporizer to the engine in the gaseous state with a temperature of $50^{\circ}C$ and a pressure of 35MPa. Therefore, a structural safety evaluation of the double-walled pipelines considering thermal load is essential. In this article, an uniaxial tensile test for super duplex stainless steel, material for double-walled pipe, according to the annealing time was carried out to analyze the thermal effect. In addition, thermo-structural analysis of the high temperature-high pressure double-walled pipe with fixed supports that are now used widely was carried out to evaluate the structural safety. To minimize stress concentration of the connection point between the support and inner pipe, the shapes of the new type support that can slip through inner pipe were proposed, and the supports which has best structural performance was selected using the results from the thermo-structural analyses of new supports and an analysis of the whole double-walled pipeline was performed to ensure structural safety. These results can be used as a database for the design of double-walled pipelines and sliding support.

Problems and Ways of Improvement towards the Maldevelopment of Reserved Areas of Natural Environments, Ulleung Island (울릉도 자연환경자원보호구역에서의 난개발 문제점과 개선방안)

  • Oh, Nam-Hyun
    • Journal of the Korean association of regional geographers
    • /
    • v.7 no.3
    • /
    • pp.14-28
    • /
    • 2001
  • This study is to discuss the problems due to the maldevelopment occurred at the reserved areas of natural environments of the Ulleung Island, Gyeongsangbuk-do province, and it also suggests the ways of solving them The types of the maldevelopment practiced on the Ulleung Island consist of the change of land use, the opening of a round road, the destruction of mountains for the construction of harbor, the development of tourist areas, and the construction of military facilities. The decreased habitat of animals and the pollution of drinking water are occurred by the change of land use. The destruction of ecological system is due to the opening of a round road. The damage of natural landscape and the change of ocean eco-system is closely related to the construction of harbor and the destruction of mountains. Finally, the damage of rare plants and the pollution of drinking water are due to the development of tourist areas and the construction of military facilities. In the followings, the ways of solving the problems occurred by the various types of maldevelopment are suggested. First, the planning of pro-environmental development has to be established and practiced to preserve rare plants which are damaged due to the change of land use. Second, the destruction of natural landscape and resources has to be minimized by the implementation of environmental impact assesment when road and harbor are constructed. Third, the stones needed for the development of islands ought to be imported from mainland. Fourth, the established tourist areas are needed to rationally manage and the potential tourist areas has to be transferred to the reserved areas of natural environments. Fifth, military facilities should be constructed though the cooperation of autonomous local government. Finally, government officers' and residents' conscience of protecting and reserving natural environments is needed, and government has to give residents financial supports.

  • PDF

Active Front End Rectifier Control of DC Distribution System Using Neural Network (신경회로망을 적용한 직류배전시스템의 AFE 정류기 제어에 관한 연구)

  • Kim, Seongwan;Jeon, Hyeonmin;Kim, Jongsu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1124-1128
    • /
    • 2021
  • As regulations of emissions from ships become more stringent, electric propulsion systems have been increasingly used to solve this problem in vessels ranging from large merchant ships to small and medium-sized ships. Methods for improving the efficiency of the electric propulsion system include the improvement of power sources; the use of a system linked to environmentally friendly power sources, such as batteries, fuel cells, and solar power; and the development of hardware and control methodology for rectifiers, power conversion devices, and propulsion motors. The method using a phase-shifting transformer with diodes has been widely used for rectification. Power semiconductor devices with grid connection to an environmentally friendly power source using DC distribution, a variable speed power source, and the application of small and medium-sized electric propulsion systems have been developed. Accordingly, the demand for active front-end (AFE) rectifiers is increasing. In this study, a method using a neural network rather than a conventional proportional-integral controller was proposed to control the AFE rectifier. Tested controller data were used to design a neural network controller trained through MATLAB/Simulink. The neural network controller was applied to a rectification system designed using PSIM software. The results indicated the effectiveness of improving the waveform and power factor DC output stage according to the load variation. The proposed system can be applied as a rectification system for small and medium-sized environmentally friendly ships.

Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

  • Hadano, Kesayoshi;Lee, Ki Yeol;Moon, Byung Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1) setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2) workability in installation and maintenance operations; (3) high energy conversion potential; and (4) low cost. In this system, neither the wall(s) of the chambers nor the energy conversion device(s) are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s). Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

Container Transportation Models in Industrial Estate Area (산업단지내 효율적 컨테이너 운송을 위한 수송 모형)

  • Shin, Jae Young;Kim, Woong-Sub
    • Journal of Navigation and Port Research
    • /
    • v.38 no.2
    • /
    • pp.171-176
    • /
    • 2014
  • Companies are facing challenges to have high competitiveness because of continuous oil price rising and CO2 emissions regulations. Thus, companies are trying hard to construct effective logistics and operation system to achieve high customer service quality and saving cost. Also the ec-friendly idustrial complex is needed. Busan is in process to construct GILC(Global Industry Logistics City) in west Busan province to achieve high competitiveness and support lack of industrial complex. To construct this kind of logistics industrial complex, it needs logistics system through proper policy and freight transportation co-operation. Especially, efficient management through logistics hierarchy construction in industrial complex is very important for low cost and eco-friendly point of view. Therefore, this paper aims to analyze logistics system and suggest operation model to present logistics complex construction base data.

A study on characteristics of each operation mode for hybrid electric propulsion ship by operation circumstances (선박 운전 환경에 따른 하이브리드 전기추진선박의 운전모드별 출력 특성에 관한 연구)

  • Kim, Jong-Su;Jeon, Hyeon-Min;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.245-250
    • /
    • 2017
  • Worldwide environmental regulations have been enhanced for emission reduction of greenhouse gases and air pollutants; accordingly, some measures were prepared. Furthermore, the need for effective and reasonable energy-saving methods is growing in accordance with that for environmental pollution minimization. In the case of marine engineering, techniques for the development of eco-friendly vessels have been actively studied, including reduction of exhaust gas emissions, development of alternative fuel, and development of a new propulsion system. In this study, we presented the basic concepts and analyzed the speed, current, voltage, and output power characteristics of each operating mode, i.e., operating mode of battery, generator, and full power.

A Study on the Improvement of Steering Command System through Accident Analysis of Azimuth thruster using STAMP Method

  • HyunDong Kim;SangHoon Lee;JeongMin Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.9
    • /
    • pp.149-158
    • /
    • 2023
  • With the global paradigm shift towards climate change, the shipbuilding industry is also considering propulsion systems that utilize eco-friendly fuels various propulsion systems are gaining attention as a result. In conventional propulsion systems, typically consisting of propellers and rudders, have evolved into a diverse range of systems due to the development of a special propulsion system known as the azimuth thruster. While azimuth thrusters were previously commonly installed on tugboats, they are now extensively used on offshore plant operation ships equipped with dynamic positioning systems. However, these azimuth thrusters require different steering methods compared to conventional propulsion systems, leading to a significant learning curve for the crew members boarding such vessels. Furthermore the availability of education related to these special propulsion systems is limited. This study aims to analyze accidents caused by inadequate control of vessels equipped with azimuth thrusters using the STAMP technique. And it proposes the necessity of standard steering commands for the safe operation of vessels equipped with special propellers.

Experimental Study of Thermal Conductivity for Glass Wool by Inserted Dissimilar Materials based on Structural Composites (구조 복합재료 기반 이종재료 첨가시의 유리섬유의 열적 성능 평가에 대한 실험적 연구)

  • Bae, Jin-Ho;Oh, Jong-Ho;Byun, Jun-Seok;Lee, Jae-Myung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.448-455
    • /
    • 2018
  • Glass wool is an eco-friendly materials that is manufactured through a continuous process by processing waste glass. This materials is low cost compared with another materials and has excellent thermal conductivity. For this reason, glass wool is installed as insulation system for LNG carriers and as insulation of building wall as well as various industries. The mechanism of insulation of glass wool is the conduction of the wool itself and convection by space between fibers. Therefore, in order to develop the enhanced thermal conductivity of glass wool is necessary to reduce its own conduction or to insert additional material after manufacturing as well as prevent convection. In this respect, many researchers have been actively studying to decrease thermal conductivity of polyurethane foam using by inserted glass wool or change the chemical component of glass wool. However, many research are aiming reduction of glass wool itself. This study focus on post-processing and inserted different materials; silica-aerogel, kevlar fiber 1mm, 6mm and glass bubble. Experimental results show that the thermal conductivity almost decreases with the addiction of glass bubble and silica aerogel.

Recent advances in natural gas hydrate carriers for gas transportation - A review and conceptual design

  • Kim, Kipyoung;Kim, Youtaek;Kang, Hokeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.589-601
    • /
    • 2014
  • Natural gas hydrate (NGH) is emerging as a new eco-friendly source of energy to replace fossil fuels in the 21st century. It is well known that the Natural Gas Hydrate contains large amount of natural gas about 170 times as much as its volume and it is easy to be stored and transported safely at about $-20^{\circ}C$ under atmospheric pressure due to so called "self-preservation effect". The option of gas transport by gas hydrate pellets carrier has been investigated and developed in various industry and academy. The natural gas hydrate pellet carrier is on major link in a potential gas hydrate process chain, starting with the extraction of natural gas from the reservoir, followed by the production of hydrate pellets and the transportation to an onshore terminal for further processing or marketing. In recent years, Korean project team supported by Korean Government has been working on the development of NGH total systems including novel NGH carrier since 2011. In order to increase the knowledge on the NGH pellet carrier developed and to understand the major hazards that could have significant impact on the safety of the vessel, this paper presents and evaluates the pros and cons of cargo holds, loading and unloading systems through the analysis of current patent technology. Based on the proven and well-known technologies as well as potential measures to mitigate sintering and minimize mechanical stress on the hydrate pellet in the self-preservation state, this study presents the conceptual and basic design for NGH carrier.

Development of an Automated Design Algorithm for the Longitudinal Members of Oil Tankers based on H-CSR (H-CSR 기반 유조선 종강도 부재의 설계 자동화 알고리즘 개발)

  • Park, Chan-im;Jeong, Sol;Song, Ha-cheol;Na, Seung-soo;Park, Min-cheol;Shin, Sang-hoon;Lee, Jeong-youl
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.6
    • /
    • pp.503-513
    • /
    • 2016
  • In order to reduce the green-house gas exhaustion, International Maritime Organization (IMO) has been reinforcing carbon gas regulations. Due to the regulations, a lot of competitions for designing Eco ship in the shipbuilding industry are progressing now. It is faced with the necessity of reducing hull weight by combining automated systems for optimal compartment arrangement with hull structural design. Most researches on optimum structural design method have been consistently in progress and applied to minimize weight and cost of mid-ship section in preliminary ship design stage based on analytical structural analysis method on fixed compartment arrangement. In order to reduce design period and to improve international technical competitiveness by shortening the period of hull structural design and enhancing design accuracy, it has been felt necessity to combine optimized compartment arrangement with optimum design of ship structure based on the international regulations and rules. So in this study, the automated design algorithm for longitudinal members has been developed to combine automated algorithm of compartment arrangement with hull structural design system for oil tanker. The SeaTrust-Hullscan software developed by Korean Register is used to perform ship structural design for mother ship and selected design cases. The effect of weight reduction is verified with comparison of ship weight between mother ship and the cases suggested in this study.