• Title/Summary/Keyword: ocean diversity

Search Result 376, Processing Time 0.024 seconds

A Review on the Quality Control of Marine Fish Data (해양어류 자료의 정도관리에 대한 고찰)

  • LEE, HWAHYUN;SOHN, DONGWHA;KIM, SUAM
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.3
    • /
    • pp.277-289
    • /
    • 2021
  • Among various data types obtained from the ocean, the quality controls for abiotic data collected from chemical, physical, and geological field surveys haves already been partially established. Due to the difficulties in standardization of the data collections and basic analyses, however, the quality controls of biotic data are in its early stage. For marine fish, the necessity of quality control is more demanded due to the wide range of data usage, but there are currently no consistent quality control guidelines because of the diversity and scope of data types derived from species-specific and age-specific information throughout various habitats. In this paper, we provide examples of marine fish data utilization and also show methods of the marine fish data collection, limitations of the data collection methods, and suggestions for improving the marine fish data quality. We hope this paper will help to establish the direction of quality control for marine fish data from both fishery-dependent and fishery-independent surveys in Korea in the near future.

Bioluminescence capability and intensity in the dinoflagellate Alexandrium species

  • Park, Sang Ah;Jeong, Hae Jin;Ok, Jin Hee;Kang, Hee Chang;You, Ji Hyun;Eom, Se Hee;Yoo, Yeong Du;Lee, Moo Joon
    • ALGAE
    • /
    • v.36 no.4
    • /
    • pp.299-314
    • /
    • 2021
  • Some species in the dinoflagellate genus Alexandrium are bioluminescent. Of the 33 formally described Alexandrium species, the bioluminescence capability of only nine species have been tested, and eight have been reported to be bioluminescent. The present study investigated the bioluminescence capability of seven Alexandrium species that had not been tested. Alexandrium mediterraneum, A. pohangense, and A. tamutum were bioluminescent, but A. andersonii, A. hiranoi, A. insuetum, and A. pseudogonyaulax were not. We also measured the bioluminescent intensity of A. affine, A. fraterculus, A. mediterraneum, A. ostenfeldii, A. pacificum, A. pohangense, A. tamarense, and A. tamutum. The mean 200-second-integrated bioluminescence intensity per cell ranged from 0.02 to 32.2 × 104 relative luminescence unit per cell (RLU cell-1), and the mean maximum bioluminescence intensity per cell per second (BLMax) ranged from 0.01 to 10.3 × 104 RLU cell-1 s-1. BLMax was significantly correlated with the maximum growth rates of Alexandrium species, except for A. tamarense. A phylogenetic tree based on large subunit ribosomal DNA (LSU rDNA) showed that the bioluminescent species A. affine, A. catenella, A. fraterculus, A. mediterraneum, A. pacificum, and A. tamarense formed a large clade. However, the toxicity or mixotrophic capability of these species was split. Thus, their bioluminescence capability in this clade was more consistent than their toxicity or mixotrophic capability. Phylogenetic trees based on LSU rDNA and the luciferase gene of Alexandrium were consistent except for A. pohangense. The results of the present study can provide a basis for understanding the interspecific diversity in bioluminescence of Alexandrium.

Experimental analysis of very long range spread spectrum underwater acoustic communication using vertical sensor array (수직 배열 센서를 이용한 초장거리 대역확산 수중음향통신의 실험 분석)

  • Youn, Chang-hyun;Ra, Hyung-in;An, Jeong-ha;Kim, Ki-man;Kim, In-soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.2
    • /
    • pp.150-158
    • /
    • 2022
  • This paper presents the results of a sea trial for very long range spread spectrum underwater acoustic communication conducted in the East Sea in September 2021. Signals were collected through 8 vertical sensors, and the range between the transmitter and receiver was about 160 km. 30 bps Multi-Code Spread Spectrum (MCSS) method and 100 bps Chirp Spread Spectrum method were used for the transmitting signal generation. The results show that when the channel coding technique was not used in a single channel, the uncoded bit error rate was high, but when the Equal Gain Combining (EGC) diversity technique was used after frame synchronization in each receiving channel, the uncoded bit error rate was reduced to 0.1 or less.

Seasonal Variation in the Species Composition of Larval Fish Assemblages in the Coastal Waters off Gadeok-do, South Sea, Korea (한국 남해 가덕도 인근해역에 출현하는 자어의 종조성과 계절변동)

  • Eun Kyung Lee
    • Korean Journal of Ichthyology
    • /
    • v.35 no.4
    • /
    • pp.294-304
    • /
    • 2023
  • Seasonal variations in the community structure of larval fish assemblage in the coastal waters off Gadeok-do were investigated in May, August and November of 2019, and February in 2020. During the study period, a total of 85 larvae species belonging to 45 families were collected. The dominant species were Engraulis japonica, Gobiidae sp., Clupea pallasii, Decapterus maruadsi, and Callionymidae sp.. These five species accounted for 84.1% of the total number of larvae during the survey period. E. japonica, Gobiidae sp., D. maruadsi, and Callionymidae sp. were the dominant species in the summer, while C. pallasii was the dominant species in the winter. The Species Diversity Index was highest in the summer and lower in the fall and winter months, with the lowest values in the spring. As a result of cluster analysis using the number of individual larval fish showed that they are divided into four seasonal groups. In particular, due to seasonal changes in water temperature, an appropriate growth environment was formed in the summer, and an appropriate hatching water temperature for winter spawning fish species was formed in winter, reflecting the seasonal characteristics of the larval fish community.

Optimization of Array Configuration in Time Reversal Processing (시역전 처리에서 센서 배열 최적화에 관한 연구)

  • Joo, Jae-Hoon;Kim, Jea-Soo;Ji, Yoon-Hee;Chung, Jae-Hak;Kim, Duk-Yung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.7
    • /
    • pp.411-421
    • /
    • 2010
  • A time-reversal mirror (TRM) is useful in diverse areas, such as reverberation ing, target echo enhancement and underwater communication. In underwater communication, the bit error rate has been improved significantly due to the increased signal-to-noise ratio by spatio-temporal focusing. This paper deals with two issues. First, the optimal number of array elements for a given environment was investigated based on the exploitation of spatial diversity. Second, an algorithm was developed to determine the optimal location of the given number of array elements. The formulation is based on a genetic algorithm maximizing the contrast between the foci and area of interest as an objective function. In addition, the developed algorithm was applied to the matched field processing with ocean experimental data for verification. The sea-going data and simulation showed almost 3 dB improvement in the output power at the foci when the array elements were optimally distributed.

Foreign Entry Strategies for Korean Fishery Firms (한국수산업의 해외진출전략에 관한 연구)

  • 김회천
    • The Journal of Fisheries Business Administration
    • /
    • v.15 no.1
    • /
    • pp.131-153
    • /
    • 1984
  • Fishery resources are still abundant compared with other resources and the possibility of exploitation is probably great. The Korean fishery industry has grown remarkably since 1957, and Korea is ranked as one of the major fishery countries. Its of fishery products reached the 9th in the world and the value of exports was 5th in 1982. But recently a growth rate has slowed down, due to the enlargement of territorial seas by the declaration of the 200 mile, Exclusive Economic Zone, the tendency to develop fishery resources strate-gically in international bargaining, the change in function of the international organizations, the expansion of regulated waters, the illegal arrest of our fishing boats, the rapid rise in oil prices, and the fall in fish prices, the development of fishery resources as a symbol of nationalism, the fishing boats decreptitude, the rise of crew wages, regulations on fishing methods, fish species, fishing season, size of fish, and mesh size, fishing quotas and the demand of excessive fishing royalties. Besides the the obligation of coastal countries, employing crews of their host countries is also an example of the change in the international environment which causes the aggravation of foreign profit of fishing firms. To ameliorate the situation, our Korean fishery firms must prepare efficient plans and study systematically to internationalize themselves because such existing methods as conventional fishing entry and licence fishing entry are likely to be unable to cope with international environmental change. Thus, after the systematic analysis of the problem, some new combined alternatives might be proposed. These are some of the new schemes to support this plan showing the orientation of our national policy: 1. Most of the coastal states, to cope with rapid international environmental change and to survive in the new era of ocean order, have rationalized their higher governmental structure concerning the fishery industries. And the coastal countries which are the objectives of our expecting entry, demand excessive economic and technical aid, limit the number of fishing boats’entry and the use of our foreign fishing bases, and regulate the membership of the international fishery commissions. Especially, most of the coastal or island countries are recently independent states, which are poorer in national budget, depend largely on fishing royalties and licence entry fees as their main resources of national finance. 2. Alternatives to our entry to deep sea fishing, as internationalization strategies, are by direct foreign investment method. About 30 firms have already invested approximately US $ 8 million in 9 coastal countries. Areas of investment comprise the southern part of the Atlantic Ocean, the Moroccan sea and five other sea areas. Trawling, tuna purse seining and five other fields are covered by the investment. Joint-venture is the most prominent method of this direct investment. If we consider the number of entry firms, the host countries, the number of seas available and the size of investment, this method of cooperation is perhaps insufficient so far. Our fishery firms suffer from a weakness in international competitive ability, an insufficiency of information, of short funds, incompetency in the market, the unfriendliness of host coastal countries, the incapability of partners in joint-ventures and the political instability of the host countries. To enlarge our foreign fishing grounds, we are to actively adopt the direct investment entry method and to diversity our collaboraboration with partner countries. Consequently, besides proper fishing, we might utilize forward integration strategies, including the processing fied. a. The enterprise emigration method is likely to be successful in Argentina. It includes the development of Argentinian fishing grounds which are still not exploited in spite of abundant resources. Besides, Arentina could also be developed as a base for the exploitation of the krill resources and for further entries into collaboration with other Latin American countries. b. The co-business contract fishing method works in American territorial seas where American fishermen sell their fishery products to our factory ships at sea. This method contributes greatly to obtaining more fishing quotas and in innovation bottom fishing operation. Therefore we may apply this method to other countres to diffuse our foreign fishing entry. c. The new fishing ground development method was begun in 1957 by tuna long-line experimental fishing in the Indian Ocean. It has five fields, trawling, skipjack pole fishing and shrimp trawling, and so on. Recently, Korean fisheries were successful in the development of the Antarctic Ocean krill and tuna purse seining. 3. The acceleration of the internationalization of deep sea fishing; a. Intense information exchange activities and commission participation are likely to be continues as our contributions to the international fishery organizations. We should try to enter international fishery commissions in which we are not so far participating. And we have to reform adequately to meet the changes of the function of the international commissions. With our partner countries, we ought to conclude bilateral fishery agreements, thus enlarging our collaboration. b. Our government should offer economic and technical aids to host countries to facilitate our firms’fishery entry and activities. c. To accelerate technical innovation, our fishery firms must invest greater amount in technical innovation, at the same time be more discriminatory in importing exogeneous fishery technologies. As for fishing methods; expanded use of multi-purpose fishing boats and introduction of automation should be encuraged to prevent seasonal fluctuations in fishery outputs. d. The government should increases financial and tax aid to Korean firms in order to elevate already weak financial structure of Korean fishery firms. e. Finally, the government ought to revise foreign exchange regulations being applied to deep sea fishery firms. Furthermore, dutes levied on foreign purchaed equipments and supplies used by our deep sea fishing boats thould be reduced or exempted. when the fish caught by Korean partner of joint-venture firms is sold at the home port, pusan, import duty should be exempted.

  • PDF

Species Composition of the Catches collected by a Bottom Trawl in the Southern Waters of Korea in Summer, 2004 (2004년 하계 한국 남해에 있어서 저층 트롤 어획물의 종조성)

  • Jeong, Sun-Beom;Hwang, Doo-Jin;Kim, Young-Ju;Shin, Hyeong-Ho;Son, Yong-Uk
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.35-45
    • /
    • 2005
  • The experiment was conducted to investigate the species composition of catches collected by the bottom trawl on June 24 to 26, 2004 in the southern waters of Korea using a trawler "DONGBAEK" belongs to Yosu National University. The investigation was carried out at the 5 stations and the towing speed was 3.4${\sim}$3.7k't. The catches were composed of 46 species from 37 families, 10 orders and 2 classes for fishes and 2 species, 2 families and 2 orders for Chondrichthyes and 44 species, 35 familes, 8 orders for Osteichthyes. The catches of Perciforms were the highest as 24 species and 18 families for fishes. The catches of Spear squid, Loli해 bleekeri and Red banded lobster, Metanephrops thomsoni were also the highest for mollusca and crustacea as 1 class, 3 species, 3 families, 2 orders, 1 class and 7 species, 5 families, 1 order, 1 class respectively. In the 5 stations, number of individuals and biomass were 1,144 and 376.0kg at ST-1, 908 and 240.3kg at ST-2, 666 and 90.1kg at ST-3, 2,050 and 300..4kg at ST-4 and 561 and 24.7kg at ST-5. The diversity index of each stations ranged between 1.49 and it showed the richness index of 2.13${\sim}$3.48, the evenness index of 0.48${\sim}$0.77 and the dominance index of 0.43${\sim}$0.8. Body length distributio of the dominant specise were 9${\sim}$32cm(fork length) for Japanese horse mackerel, Trachurus japonicus, 7${\sim}$23cm(mantle length) for Common squid, Todarodes pacificus, 9${\sim}$43cm(mantle length) for Spear squid, Loli해 bleekeri, 23${\sim}$36cm(total length) for File fish, Thamnaconus modestus, 10${\sim}$28cm(fork length) for Yellow porgy, Dentex tumifrons, 10${\sim}$36cm(fork length) for Target dory, Zeus faber and 8${\sim}$35cm(fork length) for Red seabream, Pagrus major.

The Yellow Sea Ecoregion Conservation Project : the Present Situation and its Implications (황해생태지역 보전사업 추진현황 및 시사점)

  • Kim, Gwang Tae;Choi, Young Rae;Jang, Ji Young;Kim, Woong-Seo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.337-348
    • /
    • 2012
  • The Yellow Sea Ecoregion Conservation Project is a joint international project which is carried out under the purposes of conserving the habitats in the Yellow Sea Ecoregion and biodiversity from various threats that damage ecosystems, informing the importance and value of the Yellow Sea Ecoregion, and promoting the understanding and interests of Korea, China and Japan. Subsequent to the Yellow Sea Ecoregion Planning Programme which had been performed during the period from 2002 to 2006, the Yellow Sea Ecoregion Support Project has been performed over 7 years in total from 2007 to 2014. Panasonic is sponsoring the financing of the project, and the organizations in charge of the project by country are Korea Institute of Ocean Science & Technology for Korea and World Wide Fund for Nature branches for China and Japan. While the Yellow Sea Ecoregion Planning Programme was focused on the biological assessment and the selection of potential priority area by scientific review, the Yellow Sea Ecoregion Support Project is oriented toward practical activities targeting more diversified stakeholder. Especially, this project plans to support direct conservation activities in the region and participation and cooperation from local residents. The project plan is comprised of 3 phases. During the first period from 2008 to 2009, small grant projects were operated targeting 16 institutions of Korea and China, and for the second period from 2010 to 2012, one place each was selected as demonstration site for habitat conservation in Korea and China respectively and supported for three years to introduce the conservation method based on international standards such as the management of marine protected areas, ecosystem-based management and community-based management and simultaneously to develop habitat conservation activities suitable for national and regional characteristics. During the period from 2013 to 2014 which is the last phase, the project plans to distribute the performance of small grant projects and demonstration site activities through a series of forums among stakeholder. Through the activities described above, the recognition of general public on the conservation of the Yellow Sea Ecoregion was changed positively, and community-based management began to be reflected in the policies for the marine protected areas of central and local government.

Geographic Variations and DNA Polymorphisms in Gizzard-shad (Konosirus punctatus) (전어 (Konosirus punctatus)의 지리적 변이와 DNA 다형성)

  • Park, Su-Young;Kim, Jong-Yeon;Yoon, Jong-Man
    • Korean Journal of Ichthyology
    • /
    • v.18 no.4
    • /
    • pp.300-310
    • /
    • 2006
  • Genomic DNA isolated from three geographical gizzard-shad (Konosirus punctatus) populations in Seocheon (SC), Busan (BS) and Gochang (GC) collected in the West Sea and the southern sea, respectively, off the Korean Peninsula, were PCR-amplified repeatedly. Eight selected decamer and 20-mer primers generated a total of 713 loci in the SC population, 791 in the BS population, and 732 in the GC population, with a DNA fragment size ranging from 100 bp to 2,800 bp. We identified 50 unique loci for the SC population, 70 unique loci for the BS population and 130 for the GC population: 120 shared loci for the three populations. There were 108 specific loci (15.1%) for the SC population, 74 (9.4%) for the BS population, and 67 (9.2%) for the GC population. Eight primers also generated 48 polymorphic loci (6.7%) for the SC population, 26 (3.3%) for the BS population, and 16 (2.2%) for the GC population. The similarity matrix ranged from 0.756 to 0.936 for the SC population, from 0.800 to 0.938 for the BS population, and from 0.731 to 0.959 for the GC population. The dendrogram obtained by the eight primers indicates three genetic clusters: cluster 1 (SEOCHEON 01~SEOCHEON 10), cluster 2 (BUSAN 11~BUSAN 20 and GOCHANG 23~GOCHANG 24), and cluster 3 (GOCHANG 21, 22, 25, 26, 27, 28, 29 and 30). As stated above, some individuals of the GC population appear to belong in BS population. When seeing this result, it was thought with the fact that some individuals of 2 populations seem to come and go partially. Thus, RAPD-PCR analysis revealed a significant genetic distance between the three geographical gizzard-shad populations. Using various decamer and 20-mer primers, RAPD-PCR may be applied to identify specific/polymorphic markers that are particular to a species and geographic population, and to define genetic diversity, polymorphisms, and similarities among geographical gizzard-shad populations.

Microbial community analysis of an eco-friendly recirculating aquaculture system for olive flounder (Paralichthys olivaceus) using complex microbial probiotics (복합미생물 프로바이오틱을 이용한 환경친화적 넙치 순환여과양식시스템에서의 미생물군집 분석)

  • Rhee, Chaeyoung;Kim, Haham;Emmanuel, S. Aalfin;Kim, Hong-Gi;Won, Seonghun;Bae, Jinho;Bai, Sungchul C.;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.369-378
    • /
    • 2018
  • This study was conducted to evaluate effects of dietary microbial probiotics on the growth and disease resistance of olive flounder (Paralichthys olivaceus) in a recirculating aquaculture system (RAS), and the effects of the probiotic bioaugmentation on the microbial community structure and water quality. For the analysis, 80 juvenile fish (average weight, $25.7{\pm}7.6g$; average length, $15.2{\pm}1.7cm$) were fed a basal diet containing a commercial microbial product CES-AQ1 (CES; $1{\times}10^9\;CFU/kg$ diet) in an RAS for 8 weeks. Weight gain, the specific growth rate, feed efficiency, and protein efficiency ratio of the fish fed the CES diet in the RAS were 1.5~2.5 times higher than those of fish fed the basal diet alone, or the basal diet containing oxytetracycline (OTC), yeast plus bacterium, or Bacillus subtilis in a still water system. There was no significant difference in the pathogen challenge test between fish fed the OTC diet and fish fed the CES diet in the RAS, suggesting the CES-AQ1 probiotic used in the RAS as a potential replacement for antibiotics. The RAS biofilter maintained the highest microbial diversity and appeared to harbor microbial communities with ammonium oxidation, denitrification, and fish pathogen suppression functions. Ammonia, which is hazardous to fish, was significantly decreased to < 0.5 mg/L in 19 days, indicating the effectiveness of probiotic supplementation to maintain good water quality in RAS. These results suggest that the intestinal microbial communities of fish are stabilized by a probiotic-containing diet (CES) and that bioaugmentation with probiotics may be an eco-friendly and economical supplement for aquaculture of olive flounder, promoting both good water quality and fish health in an RAS.