Geographic Variations and DNA Polymorphisms in Gizzard-shad (Konosirus punctatus)

전어 (Konosirus punctatus)의 지리적 변이와 DNA 다형성

  • Park, Su-Young (Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University) ;
  • Kim, Jong-Yeon (Department of Marine Aquaculture and Biotechnology, College of Ocean Science and Technology, Kunsan National University) ;
  • Yoon, Jong-Man (Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University)
  • 박수영 (국립군산대학교 해양과학대학 수산생명의학과) ;
  • 김종연 (국립군산대학교 해양과학대학 해양생명과학부) ;
  • 윤종만 (국립군산대학교 해양과학대학 수산생명의학과)
  • Received : 2006.10.28
  • Accepted : 2006.11.20
  • Published : 2006.12.31

Abstract

Genomic DNA isolated from three geographical gizzard-shad (Konosirus punctatus) populations in Seocheon (SC), Busan (BS) and Gochang (GC) collected in the West Sea and the southern sea, respectively, off the Korean Peninsula, were PCR-amplified repeatedly. Eight selected decamer and 20-mer primers generated a total of 713 loci in the SC population, 791 in the BS population, and 732 in the GC population, with a DNA fragment size ranging from 100 bp to 2,800 bp. We identified 50 unique loci for the SC population, 70 unique loci for the BS population and 130 for the GC population: 120 shared loci for the three populations. There were 108 specific loci (15.1%) for the SC population, 74 (9.4%) for the BS population, and 67 (9.2%) for the GC population. Eight primers also generated 48 polymorphic loci (6.7%) for the SC population, 26 (3.3%) for the BS population, and 16 (2.2%) for the GC population. The similarity matrix ranged from 0.756 to 0.936 for the SC population, from 0.800 to 0.938 for the BS population, and from 0.731 to 0.959 for the GC population. The dendrogram obtained by the eight primers indicates three genetic clusters: cluster 1 (SEOCHEON 01~SEOCHEON 10), cluster 2 (BUSAN 11~BUSAN 20 and GOCHANG 23~GOCHANG 24), and cluster 3 (GOCHANG 21, 22, 25, 26, 27, 28, 29 and 30). As stated above, some individuals of the GC population appear to belong in BS population. When seeing this result, it was thought with the fact that some individuals of 2 populations seem to come and go partially. Thus, RAPD-PCR analysis revealed a significant genetic distance between the three geographical gizzard-shad populations. Using various decamer and 20-mer primers, RAPD-PCR may be applied to identify specific/polymorphic markers that are particular to a species and geographic population, and to define genetic diversity, polymorphisms, and similarities among geographical gizzard-shad populations.

한국 서해안의 서천 및 고창지역과 남해안의 부산지역으로부터 채취한 전어(Konosirus punctatus) 3개 집단의 개체로부터 genomic DNA를 분리 추출하여 PCR로 반복해서 증폭시켰다. 8개의 decamer와 20-mer를 사용하여 전체적으로 서천의 전어집단에서 713개의 loci, 부산집단에서 791개 및 고창 전어집단으로부터 732개의 100 bp에서 2,800 bp의 크기에 해당되는 total loci를 얻어냈다. 우리는 서천 전어집단에서 독특한 50개의 unique loci, 부산 전어집단으로부터 70개의 unique loci 그리고 고창의 전어집단으로부터 130개의 unique loci를 각각 확인하였고, 또한 3개 전어집단 모두에 대해서 공통적으로 가지고 있는 120개의 shared loci도 확인하였다. 특이한 specific loci를 확인한 결과 서천 전어집단에서는 108개(15.1%), 부산집단에서는 74개(9.4%) 그리고 고창 전어집단에서는 67개(9.2%)를 각각 얻어냈다. 또한 8개의 primer를 통해서 서천 전어집단에서 48개 (6.7%), 부산 전어집단에서는 26개 (3.3%) 그리고 고창 전어집단에서 16개 (2.2%)의 polymorphic loci를 얻어냈다. Similarity matrix를 통해서 볼 때 서천 전어집단에서 0.756에서 0.936까지, 부산집단에서 0.800에서 0.938까지 그리고 고창 전어집단에서 0.731에서 0.959까지의 공유가(bandsharing value)를 확인하였다. 8개의 primer를 이용하여 얻어진 dendrogram을 통해서 볼 때 genetic cluster는 cluster 1 (SEOCHEON 01~SEOCHEON 10), cluster 2 (BUSAN 11~BUSAN 20과 GOCHANG 23~GOCHANG 24) 그리고 cluster 3 (GOCHANG 21, 22, 25, 26, 27, 28, 29 및 30)와 같이 3개의 cluster로 나누어졌다. 위에서와 같이 고창 전어집단의 일부 개체는 부산 전어집단에 속하는 것으로 나타났으며, 따라서 2 전어집단의 일부 개체들은 부분적으로 오고 가는 이주현상을 나타내는 것으로 사려된다. 이러한 결과를 볼 때 RAPD-PCR 분석 방법을 통해서 우리는 지리적으로 떨어져 있는 3개의 전어 집단에 존재하는 유의성이 있는 유전적 거리를 확인할 수 있었다. 여러 가지 decamer와 20-mer를 이용한 RAPD-PCR 분석 방법은 종 및 지리적 집단과 지리적 전어집단에 존재하는 유전적 다양성, 다형성 및 유전적 유사성을 확인하는데 필요로 하는 독특한 specific/polymorphic marker를 확인할 수 있는 이용 가능한 방법이라고 할 수 있다.

Keywords

Acknowledgement

Supported by : Kunsan National University

References

  1. Cagigas, M.E., E. Vazquez, G. Blanco and J.A. Sanchez. 1999. Combined assessment of genetic variability in populations of brown trout (Salmo trutta L.) based on allozymes, microsatellites, and RAPD markers. Mar. Biotechnol., 1 : 286-296 https://doi.org/10.1007/PL00011778
  2. Callejas, C. and M.D. Ochando. 1998. Identification of Spanish barbel species using the RAPD technique. J. Fish Biol., 53 : 208-215 https://doi.org/10.1111/j.1095-8649.1998.tb00121.x
  3. Chenyambuga, S.W., O. Hanotte, J. Hirbo, P.C. Watts, S.J. Kemp, G.C. Kifaro, P.S. Gwakisa, P.H. Petersen and J.E.O. Rege. 2004. Genetic characterization of indigenous goats of sub-Saharan Africa using microsatellite DNA markers. Asian-Aust. J. Anim. Sci., 17 : 445-452
  4. Iyengar, A., S. Piyapattanakorn, D.M. Dtone, D.A. Heipel, B.R. Howell, S.M. Baynes and N. Maclean. 2000. Identification of microsatellite repeats in turbot (Scophthalmus maximus) and dover sole (Solea solea) using a RAPD-based technique: Characterization of microsatellite markers in dover sole. Mar. Biotechnol., 2 : 49-56
  5. Jeffreys, A.J. and D.B. Morton. 1987. DNA fingerprints of dogs and cats. Anim. Genet., 18 : 1-15
  6. Kim, J.Y., C.Y. Park and J.M. Yoon. 2004. Genetic differences and DNA polymorphism in oyster (Crassostrea spp.) analysed by RAPD-PCR. Korean J. Genet., 26 : 123-134
  7. Kim, S., Y.H. Kim and J.M. Yoon. 2006. Genetic variation in geographic crayfish (Cambaroides similis) populations. J. Fish Pathol., 19(2) : 141-153
  8. Klinbunga, S., P. Ampayup, A. Tassanakajon, P. Jarayabhand and W. Yoosukh. 2000a. Development of speciesspecific markers of the tropical oyster (Crassostrea belcheri) in Thailand. Mar. Biotechnol., 2 : 476-484
  9. Klinbunga, S., A. Boonyapakdee and B. Pratoomchat. 2000b. Genetic diversity and species-diagnostic markers of mud crabs (Genus Scylla) in Eastern Thailand determined by RAPD analysis. Mar. Biotechnol., 2 : 180- 187
  10. Liu, Z., P. Li, B.J. Argue and R.A. Dunham. 1998. Inheritance of RAPD markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and their $ F_1$, $F_2$ and backcross hybrids. Anim. Genet., 29 : 58-62 https://doi.org/10.1046/j.1365-2052.1998.00284.x
  11. Mamuris, Z., C. Stamatis, M. Bani and C. Triantaphyllidis. 1999. Taxonomic relationships between four species of the Mullidae family revealed by three genetic methods: allozymes, random amplified polymorphic DNA and mitochondrial DNA. J. Fish Biol., 55 : 572-587 https://doi.org/10.1111/j.1095-8649.1999.tb00700.x
  12. McCormack, G.C., R. Powell and B. Keegan. 2000. Comparative analysis of two populations of the brittle star Amphiura filiformis (Echinodermata: Ophiuroidae) with different life history strategies using RAPD markers. Mar. Biotechnol., 2 : 100-106
  13. Park, C.Y. and J.M. Yoon. 2005. Genetic differences and variation in two largehead hairtail (Trichiurus lepturus) populations determined by RAPD-PCR analysis. Korean J. Ichthyol., 17 : 173-186
  14. Park, S.Y., J.S. Park, J.M. Yoon. 2005. Genetic difference and variation in slipper lobster (Ibacus ciliatus) and deep sea lobster (Puerulus sewelli) throughout its distribution range determined by RAPD-PCR Analysis. Korean J. Genet., 27 : 307-317
  15. Partis, L. and R.J. Wells. 1996. Identification of fish species using random amplified polymorphic DNA (RAPD). Mol. Cell. Probes, 10 : 435-441 https://doi.org/10.1006/mcpr.1996.0060
  16. Siti Azizah, M.N., A. Ruzainah and I. Patimah. 2005. Development of RAPD markers in the eel-loach (Pangio spp.) for genetic discrimination and monitoring of wild and cultured populations. World. Aqua., 36(1) : 37-43
  17. Smith, P.J., P.G. Benson and S.M. McVeagh. 1997. A comparison of three genetic methods used for stock discrimination of orange roughy, Hoplostethus atlanticus: allozymes, mitochondrial DNA, and random amplified polymorphic DNA. Fish. Bull., 95 : 800-811
  18. Tassanakajon, A., S. Pongsomboon, P. Jarayabhand, S. Klinbunga and V. Boonsaeng. 1998. Genetic structure in wild populations of black tiger shrimp (Penaeus monodon) using randomly amplified polymorphic DNA analysis. J. Mar. Biotechnol., 6 : 249-254
  19. Waldbieser, G.C. and W.R. Wolters. 1999. Application of polymorphic microsatellite loci in a channel catfish Ictalurus punctatus breeding program. J. World Aquacult. Soc., 30 : 256-262 https://doi.org/10.1111/j.1749-7345.1999.tb00873.x
  20. Welsh, J. and M. McClelland. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res., 18 : 7213-7218 https://doi.org/10.1093/nar/18.24.7213
  21. Welsh, J., C. Petersen and M. McClelland. 1991. Polymorphisms generated by arbitrarily primed PCR in the mouse: application to strain identification and genetic mapping. Nucleic Acids Res., 19 : 303-306 https://doi.org/10.1093/nar/19.2.303
  22. Yoon, J.M. and G.W. Kim. 2001. Randomly amplified polymorphic DNA-polymerase chain reaction analysis of two different populations of cultured Korean catfish Silurus asotus. J. Biosci., 26 : 641-647 https://doi.org/10.1007/BF02704762
  23. Yoon, J.M. and H.Y. Park. 2002. Genetic similarity and variation in the cultured and wild crucian carp (Carassius carassius) estimated with random amplified polymorphic DNA. Asian-Aust. J. Anim. Sci., 15 : 470-476
  24. Yoon, J.M. and Y.H. Kim. 2003a. Wide marsh clam (Corbicula spp.) populations from three sites analysed by RAPD-PCR-AGE. Bull. Electrochem., 19 : 337-348
  25. Yoon, J.M. and G.W. Kim. 2003b. Genetic differences between cultured and wild penaeid shrimp (Penaeus chinensis) populations analysed by RAPD-PCR. Korean J. Genet., 25 : 21-32
  26. Yoon, J.M. and J.Y. Kim. 2004. Genetic differences within and between populations of Korean catfish (S. asotus) and bullhead (P. fulvidraco) analysed by RAPD-PCR. Asian-Aust. J. Anim. Sci., 17 : 1053-1061
  27. Yoon, J.M. and S.Y. Park. 2006. Genetic comparison between crucian carp (Carassius auratus Linnaeus) and crucian carp (C. cuvieri Temminck and Schlegel). J. Anim. Sci. & Technol., 48(5) : 637-650