Browse > Article
http://dx.doi.org/10.4490/algae.2021.36.12.6

Bioluminescence capability and intensity in the dinoflagellate Alexandrium species  

Park, Sang Ah (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Ok, Jin Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Kang, Hee Chang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
You, Ji Hyun (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Eom, Se Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Yoo, Yeong Du (Department of Marine Biotechnology, College of Ocean Sciences, Kunsan National University)
Lee, Moo Joon (Department of Marine Biotechnology, Anyang University)
Publication Information
ALGAE / v.36, no.4, 2021 , pp. 299-314 More about this Journal
Abstract
Some species in the dinoflagellate genus Alexandrium are bioluminescent. Of the 33 formally described Alexandrium species, the bioluminescence capability of only nine species have been tested, and eight have been reported to be bioluminescent. The present study investigated the bioluminescence capability of seven Alexandrium species that had not been tested. Alexandrium mediterraneum, A. pohangense, and A. tamutum were bioluminescent, but A. andersonii, A. hiranoi, A. insuetum, and A. pseudogonyaulax were not. We also measured the bioluminescent intensity of A. affine, A. fraterculus, A. mediterraneum, A. ostenfeldii, A. pacificum, A. pohangense, A. tamarense, and A. tamutum. The mean 200-second-integrated bioluminescence intensity per cell ranged from 0.02 to 32.2 × 104 relative luminescence unit per cell (RLU cell-1), and the mean maximum bioluminescence intensity per cell per second (BLMax) ranged from 0.01 to 10.3 × 104 RLU cell-1 s-1. BLMax was significantly correlated with the maximum growth rates of Alexandrium species, except for A. tamarense. A phylogenetic tree based on large subunit ribosomal DNA (LSU rDNA) showed that the bioluminescent species A. affine, A. catenella, A. fraterculus, A. mediterraneum, A. pacificum, and A. tamarense formed a large clade. However, the toxicity or mixotrophic capability of these species was split. Thus, their bioluminescence capability in this clade was more consistent than their toxicity or mixotrophic capability. Phylogenetic trees based on LSU rDNA and the luciferase gene of Alexandrium were consistent except for A. pohangense. The results of the present study can provide a basis for understanding the interspecific diversity in bioluminescence of Alexandrium.
Keywords
harmful algal bloom; luciferase gene; luminescence; protist; red tide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Eckford-Soper, L. K., Bresnan, E., Lacaze, J. -P., Green, D. H. & Davidson, K. 2016. The competitive dynamics of toxic Alexandrium fundyense and non-toxic Alexandrium tamarense: the role of temperature. Harmful Algae 53:135-144.   DOI
2 Huelsenbeck, J. P. & Ronquist, F. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754-755.   DOI
3 John, U., Litaker, R. W., Montresor, M., Murray, S., Brosnahan, M. L. & Anderson, D. M. 2014. Formal revision of the Alexandrium tamarense species complex (Dinophyceae) taxonomy: the introduction of five species with emphasis on molecular-based (rDNA) classification. Protist 165:779-804.   DOI
4 Wilson, T. & Hastings, J. W. 2013. Bioluminescence: living lights, lights for living. Harvard University Press, Cambridge, MA, 185 pp.
5 Murray, S., John, U., Savela, H. & Kremp, A. 2020. Alexandrium spp.: genetic and ecological factors influencing saxitoxin production and proliferation. In Botana, L. M., Louzao, M. C. & Vilarino, N. (Eds.) Climate Change and Marine and Freshwater Toxins. Walter de Gruyter, Berlin, pp. 133-166.
6 Hastings, J. W. & Sweeney, B. M. 1957. The luminescent reaction in extracts of the marine dinoflagellate, Gonyaulax polyedra. J. Cell. Comp. Physiol. 49:209-225.   DOI
7 Montresor, M., John, U., Beran, A. & Medlin, L. K. 2004. Alexandrium tamutum sp. nov. (Dinophyceae): a new nontoxic species in the genus Alexandrium. J. Phycol. 40:398-411.   DOI
8 Swift, E., Biggley, W. H. & Seliger, H. H. 1973. Species of oceanic dinoflagellates in the genera Dissodinium and Pyrocystis: interclonal and interspecific comparisons of the color and photon yield of bioluminescence. J. Phycol. 9:420-426.   DOI
9 Sweeney, B. M. 1963. Bioluminescent dinoflagellates. Biol. Bull. 125:177-181.   DOI
10 Sweeney, B. M. 1986. The loss of the circadian rhythm in photosynthesis in an old strain of Gonyaulax polyedra. Plant Physiol. 80:978-981.   DOI
11 Tamura, K., Dudley, J., Nei, M. & Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.   DOI
12 Lee, K. H., Jeong, H. J., Kang, H. C., Ok, J. H., You, J. H. & Park, S. A. 2019. Growth rates and nitrate uptake of co-occurring red-tide dinoflagellates Alexandrium affine and A. fraterculus as a function of nitrate concentration under light-dark and continuous light conditions. Algae 34:237-251.   DOI
13 Yoo, Y. D., Jeong, H. J., Kim, M. S., Kang, N. S., Song, J. Y., Shin, W., Kim, K. Y. & Lee, K. 2009. Feeding by phototrophic red-tide dinoflagellates on the ubiquitous marine diatom Skeletonema costatum. J. Eukaryot. Microbiol. 56:413-420.   DOI
14 Cram, D. L. & Schulein, F. H. 1974. Observations on surface-shoaling Cape hake off South West Africa. ICES J. Mar. Sci. 35:272-275.   DOI
15 Valiadi, M. & Iglesias-Rodriguez, D. 2013. Understanding bioluminescence in dinoflagellates: how far have we come? Microorganisms 1:3-25.   DOI
16 Valiadi, M., Iglesias-Rodriguez, M. D. & Amorim, A. 2012. Distribution and genetic diversity of the luciferase gene within marine dinoflagellates. J. Phycol. 48:826-836.   DOI
17 Murakami, M., Okita, Y., Matsuda, H., Okino, T. & Yamaguchi, K. 1998. From the dinoflagellate Alexandrium hiranoi. Phytochemistry 48:85-88.   DOI
18 Bill, B. D., Moore, S. K., Hay, L. R., Anderson, D. M. & Trainer, V. L. 2016. Effects of temperature and salinity on the growth of Alexandrium (Dinophyceae) isolates from the Salish Sea. J. Phycol. 52:230-238.   DOI
19 Blossom, H. E., Baedkel, T. D., Tillmann, U. & Hansen, P. J. 2017. A search for mixotrophy and mucus trap production in Alexandrium spp. and the dynamics of mucus trap formation in Alexandrium pseudogonyaulax. Harmful Algae 64:51-62.   DOI
20 Ciminiello, P., Fattorusso, E., Forino, M. & Montresor, M. 2000. Saxitoxin and neosaxitoxin as toxic principles of Alexandrium andersoni (Dinophyceae) from the Gulf of Naples, Italy. Toxicon 38:1871-1877.   DOI
21 Cusick, K. D. & Widder, E. A. 2014. Intensity differences in bioluminescent dinoflagellates impact foraging efficiency in a nocturnal predator. Bull. Mar. Sci. 90:797-811.   DOI
22 Cussatlegras, A. -S. & Le Gal, P. 2007. Variability in the bioluminescence response of the dinoflagellate Pyrocystis lunula. J. Exp. Mar. Biol. Ecol. 343:74-81.   DOI
23 Orr, R. J. S., Stuken, A., Murray, S. A. & Jakobsen, K. S. 2013. Evolutionary acquisition and loss of saxitoxin biosynthesis in dinoflagellates: the second "core" gene, sxtG. Appl. Environ. Microbiol. 79:2128-2136.   DOI
24 Blossom, H. E., Markussen, B., Daugbjerg, N., Krock, B., Norlin, A. & Hansen, P. J. 2019. The cost of toxicity in microalgae: direct evidence from the dinoflagellate Alexandrium. Front. Microbiol. 10:1065.   DOI
25 Daugbjerg, N., Hansen, G., Larsen, J. & Moestrup, O. 2000. Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302-317.   DOI
26 Lee, K. H., Jeong, H. J., Kwon, J. E., Kang, H. C., Kim, J. H., Jang, S. H., Park, J.Y., Yoon, E. Y. & Kim, J. S. 2016. Mixotrophic ability of the phototrophic dinoflagellates Alexandrium andersonii, A. affine, and A. fraterculus. Harmful Algae 59:67-81.   DOI
27 Kremp, A., Lindholm, T., Dressler, N., Erler, K., Gerdts, G., Eirtovaara, S. & Leskinen, E. 2009. Bloom forming Alexandrium ostenfeldii (Dinophyceae) in shallow waters of the Aland archipelago, Northern Baltic Sea. Harmful Algae 8:318-328.   DOI
28 Nguyen-Ngoc, L. 2004. An autecological study of the potentially toxic dinoflagellate Alexandrium affine isolated from Vietnamese waters. Harmful Algae 3:117-129.   DOI
29 Orr, R. J. S., Stuken, A., Rundberget, T., Eikrem, W. & Jakobsen, K. S. 2011. Improved phylogenetic resolution of toxic and non-toxic Alexandrium strains using a concatenated rDNA approach. Harmful Algae 10:676-688.   DOI
30 Prakash, A. & Taylor, F. J. R. 1966. A "red water" bloom of Gonyaulax acatenella in the Strait of Georgia and its relation to paralytic shellfish toxicity. J. Fish. Res. Board Can. 23:1265-1270.   DOI
31 Stamatakis, A. 2006. RaxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690.   DOI
32 McCapra, F. 1976. Chemical mechanisms in bioluminescence. Acc. Chem. Res. 9:201-208.   DOI
33 Murakami, M., Makabe, K., Yamaguchi, K., Konosu, S. & Walchli, M. R. 1988. Goniodomin A, a novel polyether macrolide from the dinoflagellate Goniodoma pseudogoniaulax. Tetrahedron Lett. 29:1149-1152.   DOI
34 Scholin, C. A., Herzog, M., Sogin, M. & Anderson, D. M. 1994. Identification of group- and strain-specific genetic makers for globally distributed Alexandrium (Dinophyceae). II. Sequence analysis of a fragment of the LSU rRNA gene. J. Phycol. 30:999-1011.   DOI
35 Seliger, H. H., Biggley, W. H. & Swift, E. 1969. Absolute values of photon emission from the marine dinoflagellates Pyrodinium bahamense, Gonyaulax polyedra and Pyrocystis lunula. Photochem. Photobiol. 10:227-232.   DOI
36 Shimomura, O. 2006. Bioluminescence: chemical principles and methods. World Scientific, Toh Tuck Link, 500 pp.
37 Laabir, M., Jauzein, C., Genovesi, B., Masseret, E., Grzebyk, D., Cecchi, P., Vaquer, A., Perrin, Y. & Collos, Y. 2011. Influence of temperature, salinity and irradiance on the growth and cell yield of the harmful red tide dinoflagellate Alexandrium catenella colonizing Mediterranean waters. J. Plankton Res. 33:1550-1563.   DOI
38 Lapota, D., Geiger, M. L., Stiffey, A. V., Rosenberger, D. E. & Young, D. K. 1989. Correlations of planktonic bioluminescence with other oceanographic parameters from a Norwegian fjord. Mar. Ecol. Prog. Ser. 55:217-227.   DOI
39 Latz, M. I. & Jeong, H. J. 1996. Effect of red tide dinoflagellate diet and cannibalism on the bioluminescence of the heterotrophic dinoflagellates Protoperidinium spp. Mar. Ecol. Prog. Ser. 132:275-285.   DOI
40 Latz, M. I. & Lee, A. O. 1995. Spontaneous and stimulated bioluminescence of the dinoflagellate Ceratocorys horrzda (Peridiniales). J. Phycol. 31:120-132.   DOI
41 Lewis, N. I., Xu, W., Jericho, S. K., Kreuzer, H. J., Jericho, M. H. & Cembella, A. D. 2006. Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital in-line holography. Phycologia 45:61-70.   DOI
42 Martinez, A., Mendez, S. & Fabre, A. 2016. First record of bioluminescence of Alexandrium fraterculus (dinoflagellate), in the Uruguayan coast, South Western Atlantic Ocean. Pan-Am. J. Aquat. Sci. 11:356-360.
43 Rohr, J., Latz, M. I., Fallon, S., Nauen, J. C. & Hendricks, E. 1998. Experimental approaches towards interpreting dolphin-stimulated bioluminescence. J. Exp. Biol. 201:1447-1460.   DOI
44 Swift, E., Sullivan, J. M., Batchelder, H. P., Van Keuren, J., Vaillancourt, R. D. & Bidigare, R. R. 1995. Bioluminescent organisms and bioluminescence measurements in the North Atlantic Ocean near latitude 59.5°N, longitude 21°W. J. Geophys. Res. Oceans 100:6527-6547.   DOI
45 Le Tortorec, A. H., Tahvanainen, P., Kremp, A. & Simis, S. G. H. 2016. Diversity of luciferase sequences and bioluminescence production in Baltic Sea Alexandrium ostenfeldii. Eur. J. Phycol. 51:317-327.   DOI
46 Lee, S. Y., Jeong, H. J., Ok, J. H., Kang, H. C. & You, J. H. 2020. Spatial-temporal distributions of the newly described mixotrophic dinoflagellate Gymnodinium smaydae in Korean coastal waters. Algae 35:225-236.   DOI
47 Kruskal, W. H. & Wallis, W. A. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47:583-621   DOI
48 Lim, A. S., Jeong, H. J., Kim, J. H., Jang, S. H., Lee, M. J. & Lee, K. 2015. Mixotrophy in the newly described dinoflagellate Alexandrium pohangense: a specialist for feeding on the fast-swimming ichthyotoxic dinoflagellate Cochlodinium polykrikoides. Harmful Algae 49:10-18.   DOI
49 Lim, A. S., Jeong, H. J. & Ok, J. H. 2019. Five Alexandrium species lacking mixotrophic ability. Algae 34:289-301.   DOI
50 Lindstrom, J., Grebner, W., Rigby, K. & Selander, E. 2017. Effects of predator lipids on dinoflagellate defense mechanisms-increased bioluminescence capacity. Sci. Rep. 7:13104.   DOI
51 Miller, S. D., Haddock, S. H. D., Elvidge, C. D. & Lee, T. F. 2005. Detection of a bioluminescent milky sea from space. Proc. Natl. Acad. Sci. U. S. A. 102:14181-14184.   DOI
52 Lim, A. S., Jeong, H. J., Ok, J. H. & Kim, S. J. 2018. Feeding by the harmful phototrophic dinoflagellate Takayama tasmanica (Family Kareniaceae). Harmful Algae 74:19-29.   DOI
53 Liu, L., Wilson, T. & Hastings, J. W. 2004. Molecular evolution of dinoflagellate luciferases, enzymes with three catalytic domains in a single polypeptide. Proc. Natl. Acad. Sci. U. S. A. 101:16555-16560.   DOI
54 Marcinko, C. L. J., Painter, S. C., Martin, A. P. & Allen, J. T. 2013. A review of the measurement and modelling of dinoflagellate bioluminescence. Prog. Oceanogr. 109:117-129.   DOI
55 Dunn, O. J. 1961. Multiple comparisons among means. J. Am. Stat. Assoc. 56:52-64.   DOI
56 Eckert, R. 2015. Excitation and luminescence in Noctiluca miliaris. In Johnson, F. H. & Haneda, Y. (Eds.) Bioluminescence in Progress. Princeton University Press, Princeton, NJ, pp. 269-300.
57 Esaias, W. E. & Curl, H. C. Jr. 1972. Effect of dinoflagellate bioluminescence on copepod ingestion rates. Limnol. Oceanogr. 17:901-906.   DOI
58 Mann, H. B. & Whitney, D. R. 1947. On a test of whether one of two random variables is stochastically larger than the other. Ann. Math. Stat. 18:50-60.   DOI
59 Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Steidinger, K. A., Millie, D. F., Bendis, B. J., Pigg, R. J. & Tester, P. A. 2003. Identification of Pfiesteria piscicida (Dinophyceae) and Pfiesteria-like organisms using internal transcribed spacer-specific PCR assays. J. Phycol. 39:754-761.   DOI
60 MacKenzie, L., de Salas, M., Adamson, J. & Beuzenberg, V. 2004. The dinoflagellate genus Alexandrium (Halim) in New Zealand coastal waters: comparative morphology, toxicity and molecular genetics. Harmful Algae 3:71-92.   DOI
61 Latz, M. I., Bovard, M., VanDelinder, V., Segre, E., Rohr, J. & Groisman, A. 2008. Bioluminescent response of individual dinoflagellate cells to hydrodynamic stress measured with millisecond resolution in a microfluidic device. J. Exp. Biol. 211:2865-2875.   DOI
62 Esaias, W. E., Curl, H. C. Jr. & Seliger, H. H. 1973. Action spectrum for a low intensity, rapid photoinhibition of mechanically stimulable bioluminescence in the marine dinoflagellates Gonyaulax catenella, G. acatenella, and G. tamarensis. J. Cell. Physiol. 82:363-372.   DOI
63 Games, P. A. & Howell, J. F. 1976. Pairwise multiple comparison procedures with unequal n's and/or variances: a Monte Carlo study. J. Educ. Stat. 1:113-125.   DOI
64 Gu, H. 2011. Morphology, phylogenetic position, and ecophysiology of Alexandrium ostenfeldii (Dinophyceae) from the Bohai Sea, China. J. Syst. Evol. 49:606-616.   DOI
65 Latz, M. I., Nauen, J. C. & Rohr, J. 2004. Bioluminescence response of four species of dinoflagellates to fully developed pipe flow. J. Plankton Res. 26:1529-1546.   DOI
66 Lilly, E. L., Halanych, K. M. & Anderson, D. M. 2005. Phylogeny, biogeography, and species boundaries within the Alexandrium minutum group. Harmful Algae 4:1004-1020.   DOI
67 Kang, H. C., Jeong, H. J., Kim, S. J., You, J. H. & Ok, J. H. 2018. Differential feeding by common heterotrophic protists on 12 different Alexandrium species. Harmful Algae 78:106-117.   DOI
68 Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., Ok, J. H., You, J. H., Kim, J. H., Lee, K. H., Park, S. A., Eom, S. H., Yoo, Y. D. & Kim, K. Y. 2021. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214.   DOI
69 Jeong, H. J., Lim, A. S., Franks, P. J. S., Lee, K. H., Kim, J. H., Kang, N. S., Lee, M. J., Jang, S. H., Lee, S. Y., Yoon, E. Y., Park, J. Y., Yoo, Y. D., Seong, K. A., Kwon, J. E. & Jang, T. Y. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97-115.   DOI
70 Jeong, H. J., Lim, A. S., Lee, K., Lee, M. J., Seong, K. A., Kang, N. S., Jang, S. H., Lee, K. H., Lee, S. Y., Kim, M. O., Kim, J. H., Kwon, J. E., Kang, H. C., Kim, J. S., Yuh, W., Shin, K., Jang, P. K., Ryu, J. -H., Kim, S. Y., Park, J. Y. & Kim, K. Y. 2017. Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors. Algae 32:101-130.   DOI
71 Kang, H. C., Jeong, H. J., Ok, J. H., You, J. H., Jang, S. H., Lee, S. Y., Lee, K. H., Park, J. Y. & Rho, J. -R. 2019. Spatial and seasonal distributions of the phototrophic dinoflagellate Biecheleriopsis adriatica (Suessiaceae) in Korea: quantification using qPCR. Algae 34:111-126.   DOI
72 Kelly, M. G. 1968. The occurrence of dinoflagellate luminescence at Woods Hole. Biol. Bull. 135:279-295.   DOI
73 Krasnow, R., Dunlap, J. C., Taylor, W., Hastings, J. W., Vetterling, W. & Gooch, V. 1980. Circadian spontaneous bioluminescent glow and flashing of Gonyau1ax polyedra. J. Comp. Phvsiol. 138:19-26.   DOI
74 Anderson, D. M., Alpermann, T. J., Cembella, A. D., Collos, Y., Masseret, E. & Montresor, M. 2012. The globally distributed genus Alexandrium: multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae 14:10-35.   DOI
75 Jeong, H. J., Park, J. Y., Nho, J. H., Park, M. O., Ha, J. H., Seong, K. A., Jeng, C., Seong, C. N., Lee, K. Y. & Yih, W. H. 2005. Feeding by red-tide dinoflagellates on the cyanobacterium Synechococcus. Aquat. Microb. Ecol. 41:131-143.   DOI
76 Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.   DOI
77 Satake, M., MacKenzie, L. & Yasumoto, T. 1997. Identification of Protoceratium reticulatum as the biogenetic origin of yessotoxin. Nat. Toxins 5:164-167.   DOI
78 Sullivan, J. M. & Swift, E. 1995. Photoenhancement of bioluminescence capacity in natural and laboratory populations of the autotrophic dinoflagellate Ceratium fusus (Ehrenb.) Dujardin. J. Geophys. Res. Oceans 100: 6565-6574.   DOI
79 Subong, B. J. J., Benico, G. A., Sulit, A. K. L., Mendoza, C. O., Cruz, L. J., Azanza, R. V. & Jimenez, E. C. 2017. Toxicity and protein expression of Alexandrium species collected in the Philippine waters. Philipp. J. Sci. 146:425-436.
80 Von Dassow, P. & Latz, M. I. 2002. The role of Ca2+ in stimulated bioluminescence of the dinoflagellate Lingulodinium polyedrum. J. Exp. Biol. 205:2971-2986.   DOI
81 Baker, A., Robbins, I., Moline, M. A. & Iglesias-Rodriguez, M. D. 2008. Oligonucleotide primers for the detection of bioluminescent dinoflagellates reveal novel luciferase sequences and information on the molecular evolution of this gene. J. Phycol. 44:419-428.   DOI
82 Bergkvist, J., Selander, E. & Pavia, H. 2008. Induction of toxin production in dinoflagellates: the grazer makes a difference. Oecologia 156:147-154.   DOI
83 Biggley, W. H., Swift, E., Buchanan, R. J. & Seliger, H. H. 1969. Stimulable and spontaneous bioluminescence in the marine dinoflagellates, Pyrodinium bahumense, Gonyaulax polyedra, and Pyrocystis lunula. J. Gen. Physiol. 54:96-122.   DOI
84 Colin, S. P. & Dam, H. G. 2003. Effects of the toxic dinoflagellate Alexandrium fundyense on the copepod Acartia hudsonica: a test of the mechanisms that reduce ingestion rates. Mar. Ecol. Prog. Ser. 248:55-65.   DOI
85 Haddock, S. H. D., Moline, M. A. & Case, J. F. 2010. Bioluminescence in the sea. Annu. Rev. Mar. Sci. 2:443-493.   DOI
86 Guillard, R. R. L. & Hargraves, P. E. 1993. Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234-236.   DOI
87 Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.   DOI
88 Guiry, M. D. & Guiry, G. M. 2021. AlgaeBase. Available from: https://www.algaebase.org. Accessed Oct 10, 2021.
89 Higman, W. A., Stone, D. M. & Lewis, J. M. 2001. Sequence comparisons of toxic and non-toxic Alexandrium tamarense (Dinophyceae) isolates from UK waters. Phycologia 40:256-262.   DOI
90 Welch, B. L. 1947. The generalization of 'student's' problem when several different population variances are involved. Biometrika 34:28-35.   DOI
91 White, H. H. 1979. Effects of dinoflagellate bioluminescence on the ingestion rates of herbivorous zooplankton. J. Exp. Mar. Biol. Ecol. 36:217-224.   DOI
92 Widder, E. A. 2010. Bioluminescence in the ocean: origins of biological, chemical, and ecological diversity. Science 328:704-708.   DOI
93 Widder, E. A. & Case, J. F. 1981. Two flash forms in the bioluminescent dinoflagellate, Pyrocystis fusiformis. J. Comp. Physiol. 143:43-52.   DOI
94 Fogel, M. & Hastings, J. W. 1972. Bioluminescence: mechanism and mode of control of scintillon activity. Proc. Natl. Acad. Sci. U. S. A. 69:690-693.   DOI
95 Cusick, K. D. & Widder, E. A. 2020. Bioluminescence and toxicity as driving factors in harmful algal blooms: ecological functions and genetic variability. Harmful Algae 98:101850.   DOI
96 Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285.   DOI
97 Jang, S. H. & Jeong, H. J. 2020. Spatio-temporal distributions of the newly described mixotrophic dinoflagellate Yihiella yeosuensis (Suessiaceae) in Korean coastal waters and its grazing impact on prey populations. Algae 35:45-59.   DOI
98 Wohlrab, S., Iversen, M. H. & John, U. 2010. A molecular and co-evolutionary context for grazer induced toxin production in Alexandrium tamarense. PLoS ONE 5:e15039.   DOI
99 Blossom, H. E., Daugbjerg, N. & Hansen, P. J. 2012. Toxic mucus traps: a novel mechanism that mediates prey uptake in the mixotrophic dinoflagellate Alexandrium pseudogonyaulax. Harmful Algae 17:40-53.   DOI
100 Draisci, R., Ferretti, E., Palleschi, L., Marchiafava, C., Poletti, R., Milandri, A., Ceredi, A. & Pompei, M. 1999. High levels of yessotoxin in mussels and presence of yessotoxin and homoyessotoxin in dinoflagellates of the Adriatic Sea. Toxicon 37:1187-1193.   DOI