• 제목/요약/키워드: occlusion detection

검색결과 164건 처리시간 0.034초

영상 폐색영역 검출 및 해결을 위한 딥러닝 알고리즘 적용 가능성 연구 (A Study on the Applicability of Deep Learning Algorithm for Detection and Resolving of Occlusion Area)

  • 배경호;박홍기
    • 한국산학기술학회논문지
    • /
    • 제20권11호
    • /
    • pp.305-313
    • /
    • 2019
  • 최근 드론을 이용한 공간정보 구축이 활성화되면서 공간정보 산업발전에 많은 기여를 하고 있다. 하지만 드론 공간정보는 카메라의 중심투영에 의한 발생하는 폐색영역 뿐 아니라 가로수, 보행자, 현수막과 같은 적치물에 의한 폐색 영역이 필연적으로 발생한다. 이러한 폐색영역을 효율적으로 해결하기 위한 다양한 방안이 연구되고 있다. 본 연구에서는 폐색영역 해결을 위해 원초적인 재촬영이 아닌 딥러닝 알고리즘을 적용하기 위한 다양한 알고리즘별 조사 및 비교 연구를 수행하였다. 그 결과, 객체 검출 알고리즘인 HOG부터 기계학습 방법인 SVM, 딥러닝 방식인 DNN, CNN, RNN까지 다양한 모델들이 개발 및 적용되고 있으며, 이 중 영상의 분류, 검출에 가장 보편적이고 효율적인 알고리즘은 CNN 기법임을 확인하였다. 향후 AI 기반의 자동 객체 탐지와 분류는 공간정보 분야에서 각광받는 최신 과학기술이다. 이를 위해 다양한 알고리즘에 대한 검토와 적용은 중요하다. 따라서, 본 연구에서 제시하는 알고리즘별 적용 가능성은 자동으로 드론 영상의 폐색영역을 탐지하고 해결할 수 있어 공간정보 구축의 시간, 비용, 인력에 대한 효율성 향상에 기여할 것으로 판단된다.

Susceptibility Vessel Sign for the Detection of Hyperacute MCA Occlusion: Evaluation with Susceptibility-weighted MR Imaging

  • Lee, Sangmin;Cho, Soo Bueum;Choi, Dae Seob;Park, Sung Eun;Shin, Hwa Seon;Baek, Hye Jin;Choi, Ho Cheol;Kim, Ji-Eun;Choi, Hye Young;Park, Mi Jung
    • Investigative Magnetic Resonance Imaging
    • /
    • 제20권2호
    • /
    • pp.105-113
    • /
    • 2016
  • Purpose: Susceptibility vessel sign (SVS) on gradient echo image, which is caused by MR signal loss due to arterial thrombosis, has been reported in acute middle cerebral artery (MCA) infarction. However, the reported sensitivity and diagnostic accuracy of SVS have been variable. Susceptibility-weighted imaging (SWI) is a newly developed MR sequence. Recent studies have found that SWI may be useful in the field of cerebrovascular diseases, especially for detecting the presence of prominent veins, microbleeds and the SVS. The purpose of this study was to evaluate the diagnostic values of SWI for the detection of hyperacute MCA occlusion. Materials and Methods: Sixty-nine patients (37 males, 32 females; 46-89 years old [mean, 69.1]) with acute stroke involving the MCA territory underwent MR imaging within 6 hours after the symptom onset. MR examination included T2, FLAIR (fluid-attenuated inversion recovery), DWI, SWI, PWI (perfusion-weighted imaging), contrast-enhanced MR angiography (MRA) and contrast-enhanced T1. Of these patients, 28 patients also underwent digital subtraction angiography (DSA) within 2 hours after MR examination. Presence or absence of SVS on SWI was assessed without knowledge of clinical, DSA and other MR imaging findings. Results: On MRA or DSA, 34 patients (49.3%) showed MCA occlusion. Of these patients, SVS was detected in 30 (88.2%) on SWI. The sensitivity, specificity, positive predictive value, negative predictive value and diagnostic accuracy of SWI were 88.2%, 97.1%, 96.8%, 89.5% and 92.8%, respectively. Conclusion: SWI was sensitive, specific and accurate for the detection of hyperacute MCA occlusion.

RGB-D 정보를 이용한 2차원 키포인트 탐지 기반 3차원 인간 자세 추정 방법 (A Method for 3D Human Pose Estimation based on 2D Keypoint Detection using RGB-D information)

  • 박서희;지명근;전준철
    • 인터넷정보학회논문지
    • /
    • 제19권6호
    • /
    • pp.41-51
    • /
    • 2018
  • 최근 영상 감시 분야에서는 지능형 영상 감시 시스템에 딥 러닝 기반 학습 방법이 적용되어 범죄, 화재, 이상 현상과 같은 다양한 이벤트들을 강건하게 탐지 할 수 있게 되었다. 그러나 3차원 실세계를 2차원 영상으로 투영시키면서 발생하는 3차원 정보의 손실로 인하여 폐색 문제가 발생하기 때문에 올바르게 객체를 탐지하고, 자세를 추정하기 위해서는 폐색 문제를 고려하는 것이 필요하다. 따라서 본 연구에서는 기존 RGB 정보에 깊이 정보를 추가하여 객체 탐지 과정에서 나타나는 폐색 문제를 해결하여 움직이는 객체를 탐지하고, 탐지된 영역에서 컨볼루션 신경망을 이용하여 인간의 관절 부위인 14개의 키포인트의 위치를 예측한다. 그 다음 자세 추정 과정에서 발생하는 자가 폐색 문제를 해결하기 위하여 2차원 키포인트 예측 결과와 심층 신경망을 이용하여 자세 추정의 범위를 3차원 공간상으로 확장함으로써 3차원 인간 자세 추정 방법을 설명한다. 향후, 본 연구의 2차원 및 3차원 자세 추정 결과는 인간 행위 인식을 위한 용이한 데이터로 사용되어 산업 기술 발달에 기여 할 수 있다.

회전에 강인한 실시간 TLD 추적 시스템 (Rotation Invariant Tracking-Learning-Detection System)

  • 최원주;손광훈
    • 한국멀티미디어학회논문지
    • /
    • 제19권5호
    • /
    • pp.865-873
    • /
    • 2016
  • In recent years, Tracking-Learning-Detection(TLD) system has been widely used as a detection and tracking algorithm for vision sensors. While conventional algorithms are vulnerable to occlusion, and changes in illumination and appearances, TLD system is capable of robust tracking by conducting tracking, detection, and learning in real time. However, the detection and tracking algorithms of TLD system utilize rotation-variant features, and the margin of tracking error becomes greater when an object makes a full out-of-plane rotation. Thus, we propose a rotation-invariant TLD system(RI-TLD). we propose a simplified average orientation histogram and rotation matrix for a rotation inference algorithm. Experimental results with various tracking tests demonstrate the robustness and efficiency of the proposed system.

적응적 UV-histogram과 템플릿 매칭을 이용한 거리 영상에서의 고속 인간 검출 방법 (Fast Human Detection Method in Range Data using Adaptive UV-histogram and Template Matching)

  • 윤범식;김회율
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.119-128
    • /
    • 2014
  • 본 논문에서는 이전 연구 방법에서의 UV-histogram을 확장하여 적응적 UV-histogram을 제시함으로써, 복잡한 구성의 장면에서 사람의 검출율을 높이는 방법을 제시한다. 제안 방법은 먼저 U-histogram에서 사람 영역을 1차 추출하고, 각각의 레이블링된 U에서 V-histogram을 생성함으로써, 이전 방법에서 구분할 수 없었던 사람 후보 영역을 정확하게 추출한다. 또한 제안 방법은 사람 판정시, 초점거리와 거리에 따라 적응적인 크기를 가지는 오메가 모양의 템플릿을 이용하여 검출의 정확도를 높였으며, 누적 영상을 이용하여 오검출을 템플릿 재매칭 함으로써, occlusion에도 강인한 특성을 가진다. 실험 결과는 Bae의 연구방법에 비하여 복잡한 환경에서 약 15%의 정확도 향상, 80%의 재현율 향상을 보이며, Xia의 연구방법에 비하여 20배 빠른 수행속도를 보여, 제안 방법의 성능이 우수함을 입증한다.

피로 검출을 위한 능동적 얼굴 추적 (Active Facial Tracking for Fatigue Detection)

  • 김태우;강용석
    • 한국정보전자통신기술학회논문지
    • /
    • 제2권3호
    • /
    • pp.53-60
    • /
    • 2009
  • 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 운전자의 피로 상태를 검출하기 위한 얼굴 표정 인식을 위해 얼굴 특징을 추적하고자 하였다. 그러나 대다수의 얼굴 특징 추적 방법은 다양한 조명 조건과 얼굴 움직임, 회전등으로 얼굴의 특징점이 검출하지 못하는 경우가 발생한다. 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 제안된 방법은 우선, 능동적 적외선 감지기를 사용하여 다양한 조명 조건하에서 동공을 검출하고, 검출된 동공은 얼굴 움직임을 예측하는데 사용되어진다. 얼굴 움직임에 따라 특징이 국부적으로 부드럽게 변화한다고 할 때, 칼만 필터로 얼굴 특징을 추적할 수 있다. 제한된 동공 위치와 칼만 필터를 동시에 사용함으로 각각의 특징 지점을 정확하게 예상할 수 있었고, Gabor 공간에서 예측 지점에 인접한 지점을 특징으로 추적할 수 있다. 패턴은 검출된 특징에서 공간적 연관성에서 추출한 특징들로 구성된다. 실험을 통하여 다양한 조명과 얼굴 방향, 표정 하에서 제안된 능동적 방법의 얼굴 추적의 실효성을 입증하였다.

  • PDF

피로 검출을 위한 능동적 얼굴 추적 (Active Facial Tracking for Fatigue Detection)

  • 박호식;정연숙;손동주;나상동;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2004년도 춘계종합학술대회
    • /
    • pp.603-607
    • /
    • 2004
  • 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 운전자의 피로 상태를 검출하기 위한 얼굴 표정 인식을 위해 얼굴 특징을 추적하고자 하였다. 그러나 대다수의 얼굴 특징 추적 방법은 다양한 조명 조건과 얼굴 움직임, 회전등으로 얼굴의 특징점이 검출하지 못하는 경우가 발생한다. 그러므로 본 논문에서는 얼굴 특징을 추출하는 새로운 능동적 방식을 제안하고자 한다. 제안된 방법은 우선, 능동적 적외선 감지기를 사용하여 다양한 조명 조건 하에서 동공을 검출하고, 검출된 동공은 얼굴 움직임을 예측하는데 사용되어진다. 얼굴 움직임에 따라 특징이 국부적으로 부드럽게 변화한다고 할 때, 칼만 필터로 얼굴 특징을 추적할 수 있다. 제한된 동공 위치와 칼만 필터를 동시에 사용함으로 각각의 특징 지점을 정확하게 예상 할 수 있었고, Gabor 공간에서 예측 지점에 인접한 지점을 특징으로 추적할 수 있다. 패턴은 검출된 특징에서 공간적 연관성에서 추출한 특징들로 구성된다. 실험을 통하여 다양한 조명과 얼굴 방향, 표정 하에서 제안된 능동적 방법의 얼굴 추적의 실효성을 입증하였다.

  • PDF

Refinement Module 기반 Three-Scale 보행자 검출 기법 (A Three-scale Pedestrian Detection Method based on Refinement Module)

  • 정경민;박수용;이현
    • 대한임베디드공학회논문지
    • /
    • 제18권5호
    • /
    • pp.259-265
    • /
    • 2023
  • Pedestrian detection is used to effectively detect pedestrians in various situations based on deep learning. Pedestrian detection has difficulty detecting pedestrians due to problems such as camera performance, pedestrian description, height, and occlusion. Even in the same pedestrian, performance in detecting them can differ according to the height of the pedestrian. The height of general pedestrians encompasses various scales, such as those of infants, adolescents, and adults, so when the model is applied to one group, the extraction of data becomes inaccurate. Therefore, this study proposed a pedestrian detection method that fine-tunes the pedestrian area by Refining Layer and Feature Concatenation to consider various heights of pedestrians. Through this, the score and location value for the pedestrian area were finely adjusted. Experiments on four types of test data demonstrate that the proposed model achieves 2-5% higher average precision (AP) compared to Faster R-CNN and DRPN.

증강현실에서 가려진 마커를 위한 Affine-SIFT 정합 점들을 이용한 마커 검출 기법 (Marker Detection by Using Affine-SIFT Matching Points for Marker Occlusion of Augmented Reality)

  • 김용민;박찬우;박기태;문영식
    • 전자공학회논문지CI
    • /
    • 제48권2호
    • /
    • pp.55-65
    • /
    • 2011
  • 본 논문은 증강현실 시스템에서 마커가 가려진 상황에서도 강건한 마커 검출을 위하여 지역적인 특징 점들을 이용하는 방법을 제안한다. 가려진 마커를 효율적으로 검출하기 위하여, 첫 번째 단계로 등록된 마커와 가려진 마커가 포함된 입력 영상을 Affine-SIFT (ASIFT, Affine-Scale Invariant Features Transform) 방법을 이용해 정합된 특징 점들을 검출한다. 두 번째 단계로 정합된 특징 점들의 이상치(Outlier)를 제거하기 위하여, 등록된 마커의 특징 점들에 주성분 분석(Principal Component Analysis)을 적용하고 제 1 주축과 제 2 주축으로 사영한 후 중심으로 부터의 거리에 대한 평균값을 타원의 장축과 단축으로 지정한다. 세 번째 단계로 마커의 기하학적인 왜곡을 추정하기 위하여 특징 점들이 이루는 Convex-hull 지점들을 다각형의 꼭짓점으로 정한다. 마지막 단계로, 입력영상에 정합된 특징 점들의 기하적인 왜곡의 변화를 추정함으로써 마커의 가려진 환경에 서도 강건한 마커 검출 결과를 얻을 수 있다.

통계적 얼굴 모델을 이용한 부분적으로 가려진 얼굴 검출 (Detection of Faces with Partial Occlusions using Statistical Face Model)

  • 서정인;박혜영
    • 정보과학회 논문지
    • /
    • 제41권11호
    • /
    • pp.921-926
    • /
    • 2014
  • 얼굴 검출은 입력 영상에서 얼굴 영역을 추출하는 과정으로, 얼굴 인식 및 인증 과정의 속도와 정확도를 효율적으로 높여주는 작업이며 그 응용분야도 다양하다. 기존에 개발된 얼굴 검출 방법들은 얼굴의 전체 형태를 바탕으로 검출을 수행하기 때문에 착용물 또는 신체 부위로 인해 일부가 가려져 폐색된 얼굴에 대해서는 그 검출 성능이 크게 하락할 수 있다. 이러한 문제를 해결하기 위하여 이 논문에서는 얼굴 영상을 지역적 특징 기술자의 집합으로 표현하고, 이에 대한 통계적 확률 모델을 추정한 뒤 이를 이용하여 입력 영상에서 얼굴 영역을 추출하는 방법을 제안한다. AR 데이터베이스와 Caltech 데이터베이스를 이용한 실험을 통해 제안하는 얼굴 검출 방법이 일부가 폐색된 얼굴 검출에 효과적임을 확인하였다.