• 제목/요약/키워드: observer-based robust fault detection and isolation

검색결과 6건 처리시간 0.021초

미지입력을 포함한 시스템의 관측기 기반 견실고장진단 및 재구성 적응제어 (Observer-Based Robust Fault Diagnosis and Reconfigurable Adaptive Control for Systems with Unknown Inputs)

  • 최재원;이승우;서영수
    • 제어로봇시스템학회논문지
    • /
    • 제8권11호
    • /
    • pp.928-934
    • /
    • 2002
  • A natural way to cope with fault tolerant control (FTC) problems is to modify the control parameters according to an online identification of the system parameters when a fault occurs. However. due to not only difficulties Inherent to the online multivariable identification in closed-loop systems, such as modeling errors, noise or the lack of excitation signals, but also long time requirement to identify the post-fault system and implemeutation of control problems during the identification process, we propose an alternative approach based on the observer-based fault detection and isolation (FDI) and model reference adaptive control (MRAC). The proposed robust fault diagnosis method is based on a bank of observers. We also propose a model reference adaptive control with changeable reference models according to the occurred faults. Simulation results of a flight control example show the validity and applicability of the proposed algorithms.

함수 관측자를 이용한 고장검출식별기법에 관한 연구 (On the Fault Detection and Isolation Systems using Functional Observers)

  • 이기상;류지수
    • 제어로봇시스템학회논문지
    • /
    • 제9권11호
    • /
    • pp.883-890
    • /
    • 2003
  • Two GOS (Generalized Observer Scheme) type Fault Detection Isolation Schemes (FDIS), employing the bank of unknown input functional observers (UIFO) as a residual generator, are proposed to make the practical use of the multiple observer based FDIS. The one is IFD (Instrument Fault Detection) scheme and the other is PFD (Process Fault Detection) scheme. A design method of UIFO is suggested for robust residual generation and reducing the size of the observer bank. Several design objectives that can be achieved by the FDI schemes and the design methods to meet the objectives are described. An IFD system is constructed for the Boeing 929 Jetfoil boat system to show the effectiveness of the propositions. Major contributions of this paper are two folds. Firstly, the proposed UIFO approaches considerably reduce the size of residual generator in the GOS type FDI systems. Secondly, the FDI schemes, in addition to the basic functions of the conventional observer-based FDI schemes, can reconstruct the failed signal or give the estimates of fault magnitude that can be used for compensating fault effects. The schemes are directly applicable to the design of a fault tolerant control systems.

3 계 슬라이딩 모드 관측기 기반 로봇 고장 진단 (Third Order Sliding Mode Observer based Robust Fault Diagnosis for Robot Manipulators)

  • 반 미엔;강희준;서영수
    • 제어로봇시스템학회논문지
    • /
    • 제18권7호
    • /
    • pp.669-672
    • /
    • 2012
  • This paper investigates an algorithm for robust fault diagnosis in robot manipulators. The TOSM (Third Order Sliding Mode observer) provides both theoretically exact observation and unknown fault identification without filtration. The EOI (Equivalent Output Injections) of the TOSM observers can be used as residuals for the problem of fault diagnosis and to identify the unknown faults. The obtained fault information can be used for fault detection, isolation as well as fault accommodation to the self-correcting failure system. The computer simulation results for a PUMA 560 robot are shown to verify the effectiveness of the proposed strategy.

비선형계를 위한 퍼지모델 기반 감소차수 미지입력관측자 설계 (Design of a Fuzzy Model Based Reduced Order Unknown Input Observer for a Class of Nonlinear Systems)

  • 이기상
    • 전기학회논문지
    • /
    • 제57권7호
    • /
    • pp.1247-1253
    • /
    • 2008
  • A design method of a T-S fuzzy model based reduced order nonlinear unknown input observer(NUIO) is presented. The fuzzy NUIO is designed based on the parallel distributed compensation(PDC) concept. It consists of a number of the linear UIOs, each of which is designed for each local linear model in the T-S fuzzy model of a class of nonlinear systems. The fuzzy NUIO provides not only the state estimates insensitive to the unknown inputs, for example, disturbances and faults etc., but also the estimates of the unknown inputs. Therefore, It can be employed in the state feedback control and disturbance rejection control of a class of nonlinear systems with unknown disturbances. It also applied to the robust residual generation for the fault detection and isolation systems and to the design of fault tolerant control systems. As an example, the NUIO is applied to an inverted pendulum system to show the state and disturbance estimation performance and to illustrate the fuzzy reduced order NUIO design method.

Fault Tolerant Control of Wind Turbine with Sensor and Actuator Faults

  • Kim, Jiyeon;Yang, Inseok;Lee, Dongik
    • 센서학회지
    • /
    • 제22권1호
    • /
    • pp.28-37
    • /
    • 2013
  • This paper presents a fault-tolerant control technique for wind turbine systems with sensor and actuator faults. The control objective is to maximize power production and minimize turbine loads by calculating a desired pitch angle within their limits. Any fault with a sensor and actuator can cause significant error in the pitch position of the corresponding blade. This problem may result in insufficient torque such that the power reference cannot be achieved. In this paper, a fault-tolerant control technique using a robust dynamic inversion observer and control allocation is employed to achieve successful pitch control despite these faults in the sensor and actuator. The observer based detection method is used to detect and isolate sensor faults by checking whether errors are larger than threshold values. In addition, the control allocation technique is adopted to tolerate actuator fault. Control allocation is one of the most commonly used fault-tolerant control techniques, especially for over-actuated systems. Further, the control allocation method can be used to achieve the power reference even in the event of blade actuator fault by redistributing the lost torque due to erroneous pitch position into non-faulty blade actuators. The effectiveness of the proposed method is demonstrated through simulations with a benchmark model of the wind turbine.

다중 슬라이딩 표면 제어 기법에 기반한 쿼드로터의 능동 결함 허용 제어 (Active Fault Tolerant Control of Quadrotor Based on Multiple Sliding Surface Control Method)

  • 황남웅;김병수
    • 한국전자통신학회논문지
    • /
    • 제17권1호
    • /
    • pp.59-70
    • /
    • 2022
  • 본 논문에서는 쿼드로터의 모터 하나가 완전히 고장이 발생한 경우 쿼드로터의 위치 제어를 위한 능동 결함 허용 제어 방법을 제안한다. 소각의 가정 없이 라그랑지 방정식을 사용하여 쿼드로터의 동적 방정식을 구한다. 제안한 방법에서는 모터의 결함 검출을 위해 고장 검출 및 진단(FDD) 모듈과 고장 검출 및 분리(FDI) 모듈로 구성되는 고장 검출모듈을 설계한다. FDD 모듈에서는 구해진 동력학에 기반하여 쿼드로터의 상태를 관측하는 비선형 관측기를 설계한다. 관측된 쿼드로터의 상태들를 이용하여, 유수 신호를 설계하고 결함을 검출하기 위한 유수 신호의 적절한 문턱 값을 설정한다. 또한 설계된 추가 조건을 사용하여 결함 위치를 알아내기 위한 FDI 모듈을 설계한다. 모터의 결함을 검출한 후 쿼드로터가 원하는 경로로 비행하기 위해 다중 슬라이딩 표면 제어 기법에 기반한 결함 허용 제어기를 설계한다. 마지막으로, 모의실험을 통해 제안한 능동 결함 허용 제어 방법이 효용성을 검증한다.