• Title/Summary/Keyword: observation-error model

Search Result 259, Processing Time 0.02 seconds

The Effect of Uncertainty in Roughness and Discharge on Flood Inundation Mapping (조도계수와 유량의 불확실성이 홍수범람도 구축에 미치는 영향)

  • Jung, Younghun;Yeo, Kyu Dong;Kim, Soo Young;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.937-945
    • /
    • 2013
  • The accuracy of flood inundation maps is determined by the uncertainty propagated from all variables involved in the overall process including input data, model parameters and modeling approaches. This study investigated the uncertainty arising from key variables (flow condition and Manning's n) among model variables in flood inundation mapping for the Missouri River near Boonville, Missouri, USA. Methodology of this study involves the generalized likelihood uncertainty estimation (GLUE) to quantify the uncertainty bounds of flood inundation area. Uncertainty bounds in the GLUE procedure are evaluated by selecting two likelihood functions, which is two statistic (inverse of sum of squared error (1/SAE) and inverse of sum of absolute error (1/SSE)) based on an observed water surface elevation and simulated water surface elevations. The results from GLUE show that likelihood measure based on 1/SSE is more sensitive on observation than likelihood measure based on 1/SAE, and that the uncertainty propagated from two variables produces an uncertainty bound of about 2% in the inundation area compared to observed inundation. Based on the results obtained form this study, it is expected that this study will be useful to identify the characteristic of flood.

Development and Verification of a Rapid Refresh Wave Forecasting System (초단기 파랑예측시스템 구축 및 예측성능 검증)

  • Roh, Min;La, NaRy;Oh, SangMyeong;Kang, KiRyong;Chang, PilHun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.5
    • /
    • pp.340-350
    • /
    • 2020
  • A rapid refresh wave forecasting system has been developed using the sea wind on the Korea Local Analysis and Prediction System. We carried out a numerical experiment for wind-wave interaction as an important parameter in determining the forecasting performance. The simulation results based on the seasons of with typhoon and without typhoon has been compared with the observation of the ocean data buoy to verify the forecasting performance. In case of without typhoon, there was an underestimate of overall forecasting tendency, and it confirmed that an increase in the wind-wave interaction parameter leads to a decrease in the underestimate tendency and root mean square error (RMSE). As a result of typhoon season by applying the experiment condition with minimum RMSE on without typhoon, the forecasting error has increased in comparison with the result without typhoon season. It means that the wave model has considered the influence of the wind forcing on a relatively weak period on without typhoon, therefore, it might be that the wave model has not sufficiently reflected the nonlinear effect and the wave energy dissipation due to the strong wind forcing.

Applicability of Daily Solar Radiation Estimated by Mountain Microclimate Simulation Model (MT-CLIM) in Korea (MT-CLIM 프로그램을 이용한 일별 일사량 추정의 국내 적용성 검토)

  • Shim, Kyo Moon;Kim, Yong Seok;Lee, Deog Bae;Kang, Ki Keong;So, Kyo-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.14 no.4
    • /
    • pp.260-264
    • /
    • 2012
  • Accuracy of daily solar radiation estimated from a Mountain Microclimate Simulation Model (MT-CLIM) was assessed for seven observation sites with complex topography in Uiseong County. The coefficient of determination ($R^2$) between the observed and the estimated daily solar radiation was 0.52 for 7 sites for the study period from 1 August to 30 September 2009. Overall, the MT-CLIM overestimated the solar radiation with root mean square error (RMSE) of $3.83MJ\;m^{-2}$ which is about 25% of the mean daily solar radiation ($15.27MJ\;m^{-2}$) for the study period. Considering that the pyranometer's tolerance is ${\pm}5%$ of standard sensor, the RMSE of MT-CLIM was too large to accept for a direct application for agricultural sector. The reliability of solar radiation estimated by MT-CLIM must be improved by considering additional ways such as using a topography correction coefficient.

Application Analysis of GIS Based Distributed Model Using Radar Rainfall (레이더강우를 이용한 GIS기반의 분포형모형 적용성 분석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • According to recent frequent local flash flood due to climate change, the very short-term rainfall forecast using remotely sensed rainfall like radar is necessary to establish. This research is to evaluate the feasibility of GIS-based distributed model coupled with radar rainfall, which can express temporal and spatial distribution, for multipurpose dam operation during flood season. $Vflo^{TM}$ model was used as physically based distributed hydrologic model. The study area was Yongdam dam basin ($930\;km^2$) and the 3 storm events of local convective rainfall in August 2005, and the typhoon.Ewiniar.and.Bilis.collected from Jindo radar was adopted for runoff simulation. Distributed rainfall consistent with hydrologic model grid resolution was generated by using K-RainVieux, pre-processor program for radar rainfall. The local bias correction for original radar rainfall shows reasonable results of which the percent error from the gauge observation is less than 2% and the bias value is $0.886{\sim}0.908$. The parameters for the $Vflo^{TM}$ were estimated from basic GIS data such as DEM, land cover and soil map. As a result of the 3 events of multiple peak hydrographs, the bias of total accumulated runoff and peak flow is less than 20%, which can provide a reasonable base for building operational real-time short-term rainfall-runoff forecast system.

  • PDF

An Analysis of Global Solar Radiation using the GWNU Solar Radiation Model and Automated Total Cloud Cover Instrument in Gangneung Region (강릉 지역에서 자동 전운량 장비와 GWNU 태양 복사 모델을 이용한 지표면 일사량 분석)

  • Park, Hye-In;Zo, Il-Sung;Kim, Bu-Yo;Jee, Joon-Bum;Lee, Kyu-Tae
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.129-140
    • /
    • 2017
  • Global solar radiation was calculated in this research using ground-base measurement data, meteorological satellite data, and GWNU (Gangneung-Wonju National University) solar radiation model. We also analyzed the accuracy of the GWNU model by comparing the observed solar radiation according to the total cloud cover. Our research was based on the global solar radiation of the GWNU radiation site in 2012, observation data such as temperature and pressure, humidity, aerosol, total ozone amount data from the Ozone Monitoring Instrument (OMI) sensor, and Skyview data used for evaluation of cloud mask and total cloud cover. On a clear day when the total cloud cover was 0 tenth, the calculated global solar radiations using the GWNU model had a high correlation coefficient of 0.98 compared with the observed solar radiation, but root mean square error (RMSE) was relatively high, i.e., $36.62Wm^{-2}$. The Skyview equipment was unable to determine the meteorological condition such as thin clouds, mist, and haze. On a cloudy day, regression equations were used for the radiation model to correct the effect of clouds. The correlation coefficient was 0.92, but the RMSE was high, i.e., $99.50Wm^{-2}$. For more accurate analysis, additional analysis of various elements including shielding of the direct radiation component and cloud optical thickness is required. The results of this study can be useful in the area where the global solar radiation is not observed by calculating the global solar radiation per minute or time.

A Statistical Correction of Point Time Series Data of the NCAM-LAMP Medium-range Prediction System Using Support Vector Machine (서포트 벡터 머신을 이용한 NCAM-LAMP 고해상도 중기예측시스템 지점 시계열 자료의 통계적 보정)

  • Kwon, Su-Young;Lee, Seung-Jae;Kim, Man-Il
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.415-423
    • /
    • 2021
  • Recently, an R-based point time series data validation system has been established for the statistical post processing and improvement of the National Center for AgroMeteorology-Land Atmosphere Modeling Package (NCAM-LAMP) medium-range prediction data. The time series verification system was used to compare the NCAM-LAMP with the AWS observations and GDAPS medium-range prediction model data operated by Korea Meteorological Administration. For this comparison, the model latitude and longitude data closest to the observation station were extracted and a total of nine points were selected. For each point, the characteristics of the model prediction error were obtained by comparing the daily average of the previous prediction data of air temperature, wind speed, and hourly precipitation, and then we tried to improve the next prediction data using Support Vector Machine( SVM) method. For three months from August to October 2017, the SVM method was used to calibrate the predicted time series data for each run. It was found that The SVM-based correction was promising and encouraging for wind speed and precipitation variables than for temperature variable. The correction effect was small in August but considerably increased in September and October. These results indicate that the SVM method can contribute to mitigate the gradual degradation of medium-range predictability as the model boundary data flows into the model interior.

Evaluation of Regional Flowering Phenological Models in Niitaka Pear by Temperature Patterns (경과기온 양상에 따른 신고 배의 지역별 개화예측모델 평가)

  • Kim, Jin-Hee;Yun, Eun-jeong;Kim, Dae-jun;Kang, DaeGyoon;Seo, Bo Hun;Shim, Kyo-Moon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.22 no.4
    • /
    • pp.268-278
    • /
    • 2020
  • Flowering time has been put forward due to the recent abnormally warm winter, which often caused damages of flower buds by late frosts persistently. In the present study, cumulative chill unit and cumulative heat unit of Niitaka pear, which are required for releasing the endogenous dormancy and for flowering after breaking dormancy, respectively, were compared between flowering time prediction models used in South K orea. Observation weather data were collected at eight locations for the recent three years from 2018-2020. The dates of full bloom were also collected to determine the confidence level of models including DVR, mDVR and CD models. It was found that mDVR model tended to have smaller values (8.4%) of the coefficient of variation (cv) of chill units than any other models. The CD model tended to have a low value of cv (17.5%) for calculation of heat unit required to reach flowering after breaking dormancy. The mDVR model had the most accurate prediction of full bloom during the study period compared with the other models. The DVR model usually had poor skills in prediction of full bloom dates. In particular, the error of the DVR model was large especially in southern coastal areas (e.g., Ulju and Sacheon) where the temperature was warm. Our results indicated that the mDVR model had relatively consistent accuracy in prediction of full bloom dates over region and years of interest. When observation data for full bloom date are compiled for an extended period, the full bloom date can be predicted with greater accuracy improving the mDVR model further.

DEEP SPACE NETWORK MEASUREMENT MODEL DEVELOPMENT FOR INTERPLANETARY MISSION (행성간 탐사를 위한 심우주 추적망 관측모델 개발)

  • Kim, Hae-Yeon;Park, Eun-Seo;Song, Young-Joo;Yoo, Sung-Moon;Rho, Kyung-Min;Park, Sang-Young;Choi, Kyu-Hong;Yoon, Jae-Cheol;Yim, Jo-Ryeong;Choi, Jun-Min;Kim, Byung-Kyo
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.361-370
    • /
    • 2004
  • The DSN(Deep Space Network) measurement model for interplanetary navigations which is essential for precise orbit determination has been developed. The DSN measurement model produces fictitious DSN observables such as range, doppler and angular data, containing the potential observational errors in geometric data obtained from orbit propagator. So the important part of this research is to model observational errors in DSN observation and to characterize the errors. The modeled observational errors include the range delay effect caused by troposphere, ionosphere, antenna offset, and angular refraction effect caused by troposphere. Non-modeled errors are justified as the parameters. All of these results from developed models show about $10\%$ errors compared to the JPL's reference results, that are within acceptable error range.

Radar-based rainfall prediction using generative adversarial network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측)

  • Yoon, Seongsim;Shin, Hongjoon;Heo, Jae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.471-484
    • /
    • 2023
  • Deep learning models based on generative adversarial neural networks are specialized in generating new information based on learned information. The deep generative models (DGMR) model developed by Google DeepMind is an generative adversarial neural network model that generates predictive radar images by learning complex patterns and relationships in large-scale radar image data. In this study, the DGMR model was trained using radar rainfall observation data from the Ministry of Environment, and rainfall prediction was performed using an generative adversarial neural network for a heavy rainfall case in August 2021, and the accuracy was compared with existing prediction techniques. The DGMR generally resembled the observed rainfall in terms of rainfall distribution in the first 60 minutes, but tended to predict a continuous development of rainfall in cases where strong rainfall occurred over the entire area. Statistical evaluation also showed that the DGMR method is an effective rainfall prediction method compared to other methods, with a critical success index of 0.57 to 0.79 and a mean absolute error of 0.57 to 1.36 mm in 1 hour advance prediction. However, the lack of diversity in the generated results sometimes reduces the prediction accuracy, so it is necessary to improve the diversity and to supplement it with rainfall data predicted by a physics-based numerical forecast model to improve the accuracy of the forecast for more than 2 hours in advance.

Spatial Interpolation of Hourly Air Temperature over Sloping Surfaces Based on a Solar Irradiance Correction (일사 수광량 보정에 의한 산악지대 매시기온의 공간내삽)

  • 정유란;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.4 no.2
    • /
    • pp.95-102
    • /
    • 2002
  • Spatial interpolation has become a common procedure in converting temperature forecasts and observations at irregular points for use in regional scale ecosystem modeling and the model based decision support systems for resource management. Neglection of terrain effects in most spatial interpolations for short term temperatures may cause erroneous results in mountainous regions, where the observation network hardly covers full features of the complicated terrain. A spatial interpolation model for daytime hourly temperature was formulated based on error analysis of unsampled site with respect to the site topography. The model has a solar irradiance correction scheme in addition to the common backbone of the lapse rate - corrected inverse distance weighting. The solar irradiance scheme calculates the direct, diffuse and reflected components of shortwave radiation over any surfaces based on the sun-slope geometry and compares the sum with that over a reference surface. The deviation from the reference radiation is used to calculate the temperature correction term by an empirical conversion formula between the solar energy and the air temperature on any sloped surfaces at an hourly time scale, which can be prepared seasonally for each land cover type. When this model was applied to a 14 km by 22 km mountainous region at a 10 m horizontal resolution, the estimated hourly temperature surfaces showed a better agreement with the observed distribution than those by a conventional method.