DOI QR코드

DOI QR Code

Development and Verification of a Rapid Refresh Wave Forecasting System

초단기 파랑예측시스템 구축 및 예측성능 검증

  • Roh, Min (Marine & Asian Dust Modelling Team, Operational Systems Development Department, National Institute of Meteorological Science) ;
  • La, NaRy (Marine & Asian Dust Modelling Team, Operational Systems Development Department, National Institute of Meteorological Science) ;
  • Oh, SangMyeong (Marine & Asian Dust Modelling Team, Operational Systems Development Department, National Institute of Meteorological Science) ;
  • Kang, KiRyong (Marine & Asian Dust Modelling Team, Operational Systems Development Department, National Institute of Meteorological Science) ;
  • Chang, PilHun (Marine & Asian Dust Modelling Team, Operational Systems Development Department, National Institute of Meteorological Science)
  • 노민 (국립기상과학원 현업운영개발부 예측모델연구팀) ;
  • 라나리 (국립기상과학원 현업운영개발부 예측모델연구팀) ;
  • 오상명 (국립기상과학원 현업운영개발부 예측모델연구팀) ;
  • 강기룡 (국립기상과학원 현업운영개발부 예측모델연구팀) ;
  • 장필훈 (국립기상과학원 현업운영개발부 예측모델연구팀)
  • Received : 2020.08.28
  • Accepted : 2020.10.13
  • Published : 2020.10.31

Abstract

A rapid refresh wave forecasting system has been developed using the sea wind on the Korea Local Analysis and Prediction System. We carried out a numerical experiment for wind-wave interaction as an important parameter in determining the forecasting performance. The simulation results based on the seasons of with typhoon and without typhoon has been compared with the observation of the ocean data buoy to verify the forecasting performance. In case of without typhoon, there was an underestimate of overall forecasting tendency, and it confirmed that an increase in the wind-wave interaction parameter leads to a decrease in the underestimate tendency and root mean square error (RMSE). As a result of typhoon season by applying the experiment condition with minimum RMSE on without typhoon, the forecasting error has increased in comparison with the result without typhoon season. It means that the wave model has considered the influence of the wind forcing on a relatively weak period on without typhoon, therefore, it might be that the wave model has not sufficiently reflected the nonlinear effect and the wave energy dissipation due to the strong wind forcing.

한반도 대기모델의 해상풍을 입력자료로 사용하는 초단기 파랑예측시스템을 구축하고, 예측성능을 결정하는 중요한 요소인 입력바람장-파랑 상호작용을 고려하여, 수치모의실험을 수행하였다. 예측성능을 검증하기 위해 비태풍시기와 태풍시기에 대한 파랑모델의 예측결과를 기상청 계류부이 관측자료와 비교하였다. 비태풍시기에는 전반적으로 모델의 과소모의 경향이 나타났으며, 입력바람장과 파랑의 상호작용 물리계수를 증가시키면 과소모의하는 예측경향과 평균제곱근오차(RMSE)는 감소하는 것을 확인할 수 있었다. RMSE가 최소가 되는 실험조건을 적용하여 태풍시기를 분석한 결과, 비태풍시기와 비교하여 예측오차가 증가하였다. 이는 파랑모델이 상대적으로 약한 비태풍시기의 바람장 영향을 고려했기 때문으로 보이며, 강한 바람장 형성으로 인한 파랑의 비선형효과와 파랑에너지 소산효과가 충분히 반영되지 않았던 것으로 판단된다.

Keywords

References

  1. Ardhuin, F. and Herbers, T.H.C. (2005). Numerical and physical diffusion:can wave prediction models resolve directional spread. J. Atmos. Ocean Technol., 22(7), 886-895. https://doi.org/10.1175/JTECH1723.1
  2. Ardhuin, F., Rogers, E., Babanin, A., Filipot, J.F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.M., Aouf, L. and Collard, F. (2010). Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration and validation. J. Phys. Oceanogr., 40(9), 1917-1941. https://doi.org/10.1175/2010JPO4324.1
  3. Babanin, A.V. and Makin, V.K. (2008). Effects of wind trend and gustiness on the sea drag: Lake George study. J. Geophys. Res., 113(C2), C02015.
  4. Booij, N., Ris, R.C. and Holthuijsen, L.H. (1999). A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104(C4), 7649-7666. https://doi.org/10.1029/98JC02622
  5. Cardone, V.J. and Cox, A.T. (2009). Tropical cyclone wind field forcing for surge models: critical issues and sensitivities. Nat. Hazards, 51(1), 29-47. https://doi.org/10.1007/s11069-009-9369-0
  6. Donelan, M.A., Babanin, A.V., Young, I.R. and Banner, M.L. (2006). Wave-Follower field measurements of the wind-input spectral function. Part II: parameterization of the wind input. J. Phys. Oceanogr., 36(8), 1672-1689. https://doi.org/10.1175/jpo2933.1
  7. Hasselmann, S., Hasselmann, K., Allender, J.H. and Barnett, T.P. (1985). Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm. Part II: parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15(11), 1378-1392. https://doi.org/10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2
  8. Janssen, P.A.E.M. (1991). Quasi-linear theory of wind-wave generation applied to wave forecasting. J. Phys. Oceanogr. 21(11), 1631-1642. https://doi.org/10.1175/1520-0485(1991)021<1631:QLTOWW>2.0.CO;2
  9. Liu, Q., babanin, A.V., Guan, C., Zieger, S., Sun, J. and Jia, Y. (2016). Calibration and validation of HY-2 altimeter wave height. J. Atmos. Oceanic Technol., 33(5), 919-936. https://doi.org/10.1175/JTECH-D-15-0219.1
  10. Moon, I.-J., Ginis, I. and Hara, T. (2003). Numerical simulation of sea surface directional wave spectra under typhoon wind forcing. J. Phys. Oceanogr., 33(8), 1680-1706. https://doi.org/10.1175/1520-0485(2003)033<1680:NSOSSD>2.0.CO;2
  11. Rascle, N. and Ardhuin, F. (2013). A global wave parameter database for geophysical applications. Part 2: model validation with improved source term parameterization. Ocean Modell., 70, 174-188. https://doi.org/10.1016/j.ocemod.2012.12.001
  12. Rogers, W.E., Babanin, A.V. and Wang, D.W. (2012). Observationconsistent input and whitecapping dissipation in a model for wind-generated surface waves: description and simple calculations. J. Atmos. Oceanic Technol., 29(9), 1329-1346. https://doi.org/10.1175/JTECH-D-11-00092.1
  13. Tolman, H.L. (2014). User Manual and System Documentation of WAVEWATCH III Version 4.18. Techn., 316.
  14. Tolman, H.L. and Chalikov, D. (1996). Source terms in a third-generation wind wave model. J. Phys. Oceanogr., 26, 2497-2518. https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2
  15. van Vledder, G.P. (2006). The WRT method for the computation of non-linear four-wave interactions in discrete spectral wave models. Coastal Eng., 53 (2-3), 223-242. https://doi.org/10.1016/j.coastaleng.2005.10.011
  16. Zieger, S., Vinoth, J. and Young, I.R. (2009). Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the past 20 years. J. Atmos. Oceanic Technol., 26, 2549-2564. https://doi.org/10.1175/2009JTECHA1303.1