• Title/Summary/Keyword: observation model

Search Result 2,355, Processing Time 0.033 seconds

Real-time Oil Spill Dispersion Modelling (실시간 유출유 확산모델링)

  • 정연철
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.9-18
    • /
    • 1999
  • To predict the oil spill dispersion phenomena in the ocean, the oil spill response model, which can be used for strategic purpose on the oil spill site, based on Lagrangian particle-tracking method was formulated and applied to the neighboring area with Pusan port where the oil spill incident occurred when the tanker ship No.1 Youil struck on a small rock near the Namhyungjeto on September 21, 1995. The real-time tidal currents to be required as input data of the oil spill model were obtained by the two-dimensional hydrodynamic model and the tide prediction model. Evaluation of tidal currents using observation data was successful. For wind data, other input data of oil spill model, observed data on the spot were used. To verify the oil spill model, the oil spill modelling results were compared with the field data obtained from the spill site. Compared the modelling results with the observation data, there exist some discrepancies but the general pattern of modelling results was similar to that of field observation. The modelling results on 7 days after spill occurred showed that the 40% of spilled oil is in floating, 36% in evaporated, 23% at shore, and 1% in out of boundary, respectively. According to the evaluation of weighting curves of effective components to the dispersion of oil, the winds make a 37% of contribution to the dispersion of oil, turbulent diffusion 39.5%, and tidal currents 23.5%, respectively. Provided the more accurate wind data are supported, more favorable results might be obtained.

  • PDF

Nonparametric test procedures the changepoint problem with multiple observations (다중자료를 갖는 변화시점 모형에서의 비모수적인 검정법)

  • 김경무
    • The Korean Journal of Applied Statistics
    • /
    • v.4 no.1
    • /
    • pp.33-45
    • /
    • 1991
  • In the analysis of changepoint model the situation where single observation is taken at each time point has been considered. In an effort to extend this to the general situation, we may consider the changepoint model with more than one observation at each time point. These tests are developed without assuming any particular form for the underlying distribution, we propose the one-sided and two-sided nonparametric tests by extending the tests that have been considered in the changepoint model with single observation at each time point and obtain their asymptotic null distributions. We compare the empirical powers among the extended changepoint tests under one-sided or two-sided alternatives. We also compare the powers of the extended changepoint tests with those of the original test via the Monte Carlo simulation.

  • PDF

Preliminary Analysis on the Effects of Tropospheric Delay Models on Geosynchronous and Inclined Geosynchronous Orbit Satellites

  • Lee, Jinah;Park, Chandeok;Joo, Jung-Min
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.4
    • /
    • pp.371-377
    • /
    • 2021
  • This research proposes the best combination of tropospheric delay models for Korean Positioning System (KPS). The overall results are based on real observation data of Japanese Quasi-Zenith satellite system (QZSS), whose constellation is similar to the proposed constellation of KPS. The tropospheric delay models are constructed as the combinations of three types of zenith path delay (ZPD) models and four types of mapping functions (MFs). Two sets of International GNSS Service (IGS) stations with the same receiver are considered. Comparison of observation residuals reveals that the ZPD models are more influential to the measurement model rather than MFs, and that the best tropospheric delay model is the combination of GPT3 with 5 degrees grid and Vienna Mapping Function 1 (VMF1). While the bias of observation residual depends on the receivers, it still remains to be further analyzed.

Observing Sensitivity Experiment Based on Convective Scale Model for Upper-air Observation Data on GISANG 1 (KMA Research Vessel) in Summer 2018 (현업 국지모델기반 2018년 여름철 기상 1호 특별 고층관측자료의 관측 민감도 실험)

  • Choi, Dayoung;Hwang, Yoonjeong;Lee, Yong Hee
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.17-30
    • /
    • 2020
  • KMA performed the special observation program to provide information about severe weather and to monitor typhoon PRAPIROON using the ship which called the Gisang 1 from 29 June 2018 to 4 July 2018 (UTC). For this period, upper-air was observed 21 times with 6 hour intervals using rawinsonde in the Gisang 1. We investigated the impact of upper-air observation data from the Gisang 1 on the performance of the operational convective scale model (we called LDAPS). We conducted two experiments that used all observation data including upper-air observation data from the Gisang 1 (OPER) and without it (EXPR). For a typhoon PRAPIROON case, track forecast error of OPER was lower than EXPR until forecast 24 hours. The intensity forecast error of OPER for minimum sea level pressure was lower than EXPR until forecast 12 hours. The intensity forecast error of OPER for maximum wind speed was mostly lower than EXPR until forecast 30 hours. OPER showed good performance for typhoon forecast compared with EXPR at the early lead time. Two precipitation cases occurred in the south of the Korean peninsula due to the impact of Changma on 1 July and typhoon on 3 July. The location of main precipitation band predicted from OPER was closer to observations. As assimilating upper-air data observed in the Gisang 1 to model, it showed positive results in typhoon and precipitation cases.

The phase angle dependences of Reflectance on Asteroid (25143) Itokawa from the Hayabusa Spacecraft Multi-band Imaging Camera(AMICA)

  • Lee, Mingyeong;Ishiguro, Masateru
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.61.3-62
    • /
    • 2015
  • Remote-sensing observation is one of the observation methods that provide valuable information, such as composition and surface physical conditions of solar system objects. The Hayabusa spacecraft succeeded in the first sample returning from a near-Earth asteroid, (25143) Itokawa. It has established a ground truth technique to connect between ordinary chondrite meteorites and S-type asteroids. One of the scientific observation instruments that Hayabusa carried, Asteroid Multi-band Imaging Camera(AMICA) has seven optical-near infrared filters (ul, b, v, w, x, p, and zs), taking more than 1400 images of Itokawa during the rendezvous phase. The reflectance of planetary body can provide valuable information of the surface properties, such as the optical aspect of asteroid surface at near zero phase angle (i.e. Sun-asteroid-observer's angle is nearly zero), light scattering on the surface, and surface roughness. However, only little information of the phase angle dependences of the reflectance of the asteroid is known so far. In this study, we investigated the phase angle dependences of Itokawa's surface to understand the surface properties in the solar phase angle of $0^{\circ}-40^{\circ}$ using AMICA images. About 700 images at the Hayabusa rendezvous phase were used for this study. In addition, we compared our result with those of several photometry models, Minnaert model, Lommel-Seeliger model, and Hapke model. At this conference, we focus on the AMICA's v-band data to compare with previous ground-based observation researches.

  • PDF

Observing System Experiment Based on the Korean Integrated Model for Upper Air Sounding Data in the Seoul Capital Area during 2020 Intensive Observation Period (2020년 수도권 라디오존데 집중관측 자료의 한국형모델 기반 관측 영향 평가)

  • Hwang, Yoonjeong;Ha, Ji-Hyun;Kim, Changhwan;Choi, Dayoung;Lee, Yong Hee
    • Atmosphere
    • /
    • v.31 no.3
    • /
    • pp.311-326
    • /
    • 2021
  • To improve the predictability of high-impact weather phenomena around Seoul, where a larger number of people are densely populated, KMA conducted the intensive observation from 22 June to 20 September in 2020 over the Seoul area. During the intensive observation period (IOP), the dropsonde from NIMS Atmospheric Research Aircraft (NARA) and the radiosonde from KMA research vessel Gisang1 were observed in the Yellow Sea, while, in the land, the radiosonde observation data were collected from Icheon and Incheon. Therefore, in this study, the effects of radiosonde and dropsonde data during the IOP were investigated by Observing System Experiment (OSE) based on Korean Integrated Model (KIM). We conducted two experiments: CTL assimilated the operational fifteen kinds of observations, and EXP assimilated not only operational observation data but also intensive observation data. Verifications over the Korean Peninsula area of two experiments were performed against analysis and observation data. The results showed that the predictability of short-range forecast (1~2 day) was improved for geopotential height at middle level and temperature at lower level. In three precipitation cases, EXP improved the distribution of precipitation against CTL. In typhoon cases, the predictability of EXP for typhoon track was better than CTL, although both experiments simulated weaker intensity as compared with the observed data.

Evaluation of the Air Temperature and Wind Observation Environments Around Automated Synoptic Observing Systems in Summer Using a CFD Model (전산유체역학 모델을 활용한 여름철 종관기상관측소의 기온과 바람 관측 환경 평가)

  • Kang, Jung-Eun;Rho, Ju-Hwan;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.471-484
    • /
    • 2022
  • This study examined the effects of topography and buildings around the automated synoptic observing system (ASOS) on the observation environment of air temperatures and wind speeds and directions using a computational fluid dynamics(CFD) model. For this, we selected 10 ASOSs operated by the Korea Meteorological Administration. Based on the data observed at the ASOSs in August during the recent ten years, we established the initial and boundary conditions of the CFD model. We analyzed the temperature observation environment by comparing the temperature change ratios in the case considering the actual land-cover types with those assuming all land-cover types as grassland. The land-cover types around the ASOSs significantly affected the air temperature observation environment. The temperature change ratios were large at the ASOSs around which buildings and roads were dense. On the other hand, when all land covers were assumed as grassland, the temperature change ratios were small. Wind speeds and directions at the ASOSs were also significantly influenced by topography and buildings when their heights were higher or similar to the observation heights. Obstacles even located at a long distance affected the wind observation environments. The results in this study would be utilized for evaluating ASOS observation environments in the relocating or newly organizing steps.

A Study on Robust Identification Based on the Validation Evaluation of Model (모델의 타당성 평가에 기초한 로바스트 동정에 관한 연구)

  • Lee, D.C.
    • Journal of Power System Engineering
    • /
    • v.4 no.3
    • /
    • pp.72-80
    • /
    • 2000
  • In order to design a stable robust controller, nominal model, and the upper bound about the uncertainty which is the error of the model are needed. The problem to estimate the nominal model of controlled system and the upper bound of uncertainty at the same time is called robust identification. When the nominal model of controlled system and the upper bound of uncertainty in relation to robust identification are given, the evaluation of the validity of the model and the upper bound makes it possible to distinguish whether there is a model which explains observation data including disturbance among the model set. This paper suggests a method to identity the uncertainty which removes disturbance and expounds observation data by giving a probable postulation and plural data set to disturbance. It also examines the suggested method through a numerical computation simulation and validates its effectiveness.

  • PDF

A Study on Robust Identification Based on the Validation Evaluation of Model (모델의 타당성 평가에 기초한 로바스트 동정에 관한 연구)

  • Lee, Dong-Cheol;Chung, Hyung-Hwan;Bae, Jong-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2690-2692
    • /
    • 2000
  • In order to design a stable robust controller, nominal model, and the upper bound about the uncertainty which is the error of the model are needed. The problem to estimate the nominal model of controlled system and the upper bound of uncertainty at the same time is called robust identifcation. When the nominal model of controlled system and the upper bound of uncertainty in relation to robust identifcation are given, the evaluation of the validity of the model and the upper bound makes it possible to distinguish whether there is a model which explains observation data including disturbance among the model set. This paper suggests a method to identify the uncertainty which removes disturbance and expounds observation data by giving a probable postulation and plural data set to disturbance. It also examines the suggested method through a numerical computation simulation and validates its effectiveness.

  • PDF

A Study On Identification Of A Linear Discrete System When The Statistical Characteristics Of Observation Noise Are Unknown (측정잡음의 통계적 성질이 미지인 경우의 선형 이산치형계통의 동정에 관한 연구)

  • 하주식;박장춘
    • 전기의세계
    • /
    • v.22 no.4
    • /
    • pp.17-24
    • /
    • 1973
  • In the view point of practical engineering the identification problem may be considered as a problem to determine the optimal model in the sense of minimizing a given criterion function using the input-output records of the plant. In the system identification the statistical approach has been known to be very effective when the topological structure of the system and the statistical characteristics of the observation noises are known a priori. But in the practical situation there are many cases when the inforhation about the observation noises or the system noises are not available a priori. Here, the authors propose a new identification method which can be used effectively even in the cases when the variances of observation noises are unknown a priori. In the method, the identification of unknown parameters of a linear diserete system is achieved by minimizing the improved quadratic criterion function which is composed of the term of square equation errors and the term to eliminate the affection of observation noises. The method also gives the estimate of noise variance. Numerical computations for several examples show that the proposed procedure gives satisfactory results even when the short time observation data are provided.

  • PDF