Browse > Article
http://dx.doi.org/10.11003/JPNT.2021.10.4.371

Preliminary Analysis on the Effects of Tropospheric Delay Models on Geosynchronous and Inclined Geosynchronous Orbit Satellites  

Lee, Jinah (Department of Astronomy, Yonsei University)
Park, Chandeok (Department of Astronomy, Yonsei University)
Joo, Jung-Min (KPS Technology Team, Korea Aerospace Research Institute)
Publication Information
Journal of Positioning, Navigation, and Timing / v.10, no.4, 2021 , pp. 371-377 More about this Journal
Abstract
This research proposes the best combination of tropospheric delay models for Korean Positioning System (KPS). The overall results are based on real observation data of Japanese Quasi-Zenith satellite system (QZSS), whose constellation is similar to the proposed constellation of KPS. The tropospheric delay models are constructed as the combinations of three types of zenith path delay (ZPD) models and four types of mapping functions (MFs). Two sets of International GNSS Service (IGS) stations with the same receiver are considered. Comparison of observation residuals reveals that the ZPD models are more influential to the measurement model rather than MFs, and that the best tropospheric delay model is the combination of GPT3 with 5 degrees grid and Vienna Mapping Function 1 (VMF1). While the bias of observation residual depends on the receivers, it still remains to be further analyzed.
Keywords
mapping function (MF); precise orbit determination (POD); troposphere delay model; zenith path delay (ZPD);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sanz Subirana, J., Juan Zornoza, J. M., & Hernandez-Pajares, M. 2013, GNSS Data Processing, Volume I: Fundamentals and Algorithms (Noordwijk, Netherlands : ESA Communications).
2 Park, H. E., Yoo, S. M., Yoon, H. S., Chung, J. K., & Cho, J. 2016, Performance analysis of mapping functions and mean temperature equations for GNSS precipitable water vapor in the Korean peninsula, JPNT, 5, 75-85. https://doi.org/10.11003/JPNT.2016.5.2.075   DOI
3 Saastamoinen, J. 1972, Contributions to the theory of atmospheric refraction, Bulletin Geodesique (1946-1975), 105, 279-298. https://doi.org/10.1007/BF02521844   DOI
4 Teunissen, P. J. & Montenbruck, O. 2017, Springer handbook of global navigation satellite systems, vol.1 (New York, NY: Springer International Publishing).
5 Shin, M., Lim, D. W., Chun, S., & Heo, M. B. 2019, A Study on the Satellite Orbit Design for KPS Requirements, JPNT, 8, 215-223. https://doi.org/10.11003/JPNT.2019.8.4.215   DOI
6 Askne, J. & Nordius, H. 1987, Estimation of tropospheric delay for microwaves from surface weather data, Radio Science, 22, 379-386. https://doi.org/10.1029/RS022i003p00379   DOI
7 Chen, G. & Herring, T. 1997, Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data, Journal of Geophysical Research: Solid Earth, 102, 20489-20502. https://doi.org/10.1029/97JB01739   DOI
8 Indian Space Research Organization, August 2017, Indian Regional Navigation Satellite System Signal in Space ICD for Standard Positioning Service (Version 1.1, ISRO-IRNSS-ICD-SPS-1.1), Indian Space Research Organization
9 Leandro, R.F., Santos, M.C., & Langley, R.B. 2006, UNB Neutral Atmosphere Models : Development and Performance, in Proceedings of ION NTM 2006, the 2006 National Technical Meeting of The Institute of Navigation, Monterey, California, 18-20 January 2006, 564-573.
10 McCarthy, D. D. & Petit, G. 2004, IERS conventions (2003), International Earth Rotation And Reference Systems Service (IERS)(Germany).
11 Boehm, J. & Schuh, H. 2003, Vienna Mapping Functions, in Proceedings of the 16th EVGAWorking Meeting, Leipzig, Germany, 9-10 May 2003.
12 Boehm, J., Niell, A. E., Schuh, H., Tesmer, V., & Tregoning, P. 2006, Mapping functions for atmospheric delay modelling in GNSS analysis, in Proceeding of the IGS-Meeting 2006, Daemstadt.
13 Qiu, C., Wang, X., Li, Z., Zhang, S., Li, H., et al. 2020, The performance of different mapping functions and gradient models in the determination of slant tropospheric delay, Remote Sensing, 12, 130. https://doi.org/10.3390/rs12010130   DOI
14 Boehm, J., Werl, B., & Schuh, H. 2006, Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, Journal of Geophysical Research: Solid Earth, 111, B02406. https://doi.org/10.1029/2005JB003629   DOI
15 Gao, Y. & Chen, K. 2004, Performance analysis of precise point positioning using real-time orbit and clock products, Journal of Global Positioning Systems, 3, 95-100.   DOI
16 Marini, J. W. 1972, Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Science, 7, 223-231. https://doi.org/10.1029/RS007i002p00223   DOI
17 Niell, A . E. 1996, Global mapping functions for the atmosphere delay at radio wavelengths, Journal of Geophysical Research: Solid Earth, 101, 3227-3246.   DOI
18 Park, K. D., Lee, H. C., Kim, M. S., Kim, Y. G., Seo, S. W., et al. 2018, Accuracy Comparison of GPT and SBAS Troposphere Models for GNSS Data Processing, JPNT, 7, 183-188. https://doi.org/10.11003/JPNT.2018.7.3.183   DOI