• 제목/요약/키워드: objective cost function

Search Result 464, Processing Time 0.022 seconds

A Methodology of Seismic Damage Assessment Using Capacity Spectrum Method (능력 스펙트럼법을 이용한 건물 지진 손실 평가 방법)

  • Byeon, Ji-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.3 s.43
    • /
    • pp.1-8
    • /
    • 2005
  • This paper describes a new objective methodology of seismic building damage assessment which is called Advanced Component Method(ACM). ACM is a major attempt to replace the conventional loss estimation procedure, which is based on subjective measures and the opinions of experts, with one that objectively measures both earthquake intensity and the response ol buildings. First, response of typical buildings is obtained analytically by nonlinear seismic static analysis, push-over analyses. The spectral displacement Is used as a measure of earthquake intensity in order to use Capacity Spectrum Method and the damage functions for each building component, both structural and non-structural, are developed as a function of component deformation. Examples of components Include columns, beams, floors, partitions, glazing, etc. A repair/replacement cost model is developed that maps the physical damage to monetary damage for each component. Finally, building response, component damage functions, and cost model were combined probabilistically, using Wonte Carlo simulation techniques, to develop the final damage functions for each building type. Uncertainties in building response resulting from variability in material properties and load assumptions were incorporated in the Latin Hypercube sampling technique. The paper also presents and compares ACM and conventional building loss estimation based on historical damage data and reported loss data.

Oriental Medical Treatment Pattern of Korean Patients with Dizziness or Vertigo (한국인 어지럼증 환자의 최근 4년간 한방 진료 양태)

  • Kim, Jae-Yeong;Jeong, Seon-Yeong;Park, Sam-Min;Hwang, Dong-Gyu;Kho, Young Tak
    • Journal of Oriental Neuropsychiatry
    • /
    • v.26 no.3
    • /
    • pp.225-234
    • /
    • 2015
  • Objectives: We aimed to evaluate the use of Korean medicine in patients with dizziness or vertigo, since such study has not been performed previously. Methods: In the current study, we included 3 diagnoses i.e., Disorders of vestibular function (H81), Vertiginous syndromes in diseases classified elsewhere (H82), and Dizziness and giddiness (R42) from the Health Insurance Review and Assessment Service (HIRAS) database for 4 years. We analyzed the database and compared treatment with Korean vs. Western medicine. Results: 1. Korean medical visits and cost have been increasing for 4 years, except 2011. Western medical visits are 11.9 times higher than Korean medical visits. 2. The number of women who received Korean medicine was 2.6 times higher than that of men. 3. Among all ages, the 70~79 years group were the most frequent users of Korean medicine. The older age was correlated with more patients' visits. 4. The comparative number of visits by patient care type for 4 years indicated that outpatients had more visits than hospitalization. Furthermore, outpatient visits have been increasing for 4 years. 5. The comparative number of visits by hospital type for 4 years indicated that visits to the Korean medical clinic were the highest. In primary care, patients used more Korean medicine than Western medicine. In tertiary care, patients used more Western medicine than Korean medicine. 6. Korean medical cost per patient by patient care type for 4 years was a total 89,000 won, hospitalization 449,000 won and outpatient 83,000 won. Costs of all patient care types have been increasing. 7. Korean medical cost per patient by hospital type for 4 years was 156,000 won for Korean medical hospital, 83,000 won for local clinic and 127,000 won for miscellaneous facilities. Costs of all types have been increasing. Conclusions: This study provided objective information about epidemiologic characteristics of Korean medicine in patients with dizziness or vertigo. Furthermore, it provides an understanding of the recent status and forms the basis for further expansion of demand for Korean medicine among patients with dizziness or vertigo.

Construction Claims Prediction and Decision Awareness Framework using Artificial Neural Networks and Backward Optimization

  • Hosny, Ossama A.;Elbarkouky, Mohamed M.G.;Elhakeem, Ahmed
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.1
    • /
    • pp.11-19
    • /
    • 2015
  • This paper presents optimized artificial neural networks (ANNs) claims prediction and decision awareness framework that guides owner organizations in their pre-bid construction project decisions to minimize claims. The framework is composed of two genetic optimization ANNs models: a Claims Impact Prediction Model (CIPM), and a Decision Awareness Model (DAM). The CIPM is composed of three separate ANNs that predict the cost and time impacts of the possible claims that may arise in a project. The models also predict the expected types of relationship between the owner and the contractor based on their behavioral and technical decisions during the bidding phase of the project. The framework is implemented using actual data from international projects in the Middle East and Egypt (projects owned by either public or private local organizations who hired international prime contractors to deliver the projects). Literature review, interviews with pertinent experts in the Middle East, and lessons learned from several international construction projects in Egypt determined the input decision variables of the CIPM. The ANNs training, which has been implemented in a spreadsheet environment, was optimized using genetic algorithm (GA). Different weights were assigned as variables to the different layers of each ANN and the total square error was used as the objective function to be minimized. Data was collected from thirty-two international construction projects in order to train and test the ANNs of the CIPM, which predicted cost overruns, schedule delays, and relationships between contracting parties. A genetic optimization backward analysis technique was then applied to develop the Decision Awareness Model (DAM). The DAM combined the three artificial neural networks of the CIPM to assist project owners in setting optimum values for their behavioral and technical decision variables. It implements an intelligent user-friendly input interface which helps project owners in visualizing the impact of their decisions on the project's total cost, original duration, and expected owner-contractor relationship. The framework presents a unique and transparent hybrid genetic algorithm-ANNs training and testing method. It has been implemented in a spreadsheet environment using MS Excel$^{(R)}$ and EVOLVERTM V.5.5. It provides projects' owners of a decision-support tool that raises their awareness regarding their pre-bid decisions for a construction project.

Calculation of the Eco-Design Index for Components of the Multi-function Printer (공용 복합기 출력 기능 소모품들의 Eco Design Index 산정)

  • Lee, Joo-Young;Lee, Jong-Seok;Kim, Jong-Min;Lee, Kun-Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.6
    • /
    • pp.334-342
    • /
    • 2016
  • Conventional eco-design has been implemented based only on the environmental aspects of a product. Key components of a product identified from the analysis of the environmental aspects have been the target for improvement in the conventional eco-design. The use of eco-design index (EDI) considering both the environmental and economic aspects, and utility value (UV) of a product can be envisaged as an alternative way of implementing and assessing the eco-design. The objective of this study was to propose the logic of the EDI and apply it to the components for performing printing function of the multi-function printer. The EDI was formulated by quantifying the UV, life cycle environmental impact (LCE) and life cycle cost (LCC) of the components of a product, here components of the printer. Of the eight components investigated, roller was identified as the best performing consumable in both the environmental and economic aspects. However, its UV was the lowest among the eight. The EDI of the roller was mere $4^{th}$ in ranking out of the eight. Transfer belt ranked $8^{th}$ and $5^{th}$ in the environmental and economic aspects, respectively, while $2^{nd}$ in the utility value with its EDI ranked $3^{rd}$. This indicates that not only the environmental aspects but also economic and utility value aspects should be considered when identifying the key components for improvement in the eco-design.

Multi-floor Layout for the Liquefaction Process Systems of LNG FPSO Using the Optimization Technique (최적화 기법을 이용한 LNG FPSO 액화 공정 장비의 다층 배치)

  • Ku, Nam-Kug;Lee, Joon-Chae;Roh, Myung-Il;Hwang, Ji-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.68-78
    • /
    • 2012
  • A layout of an LNG FPSO should be elaborately determined as compared with that of an onshore plant because many topside process systems are installed on the limited area; the deck of the LNG FPSO. Especially, the layout should be made as multi-deck, not single-deck and have a minimum area. In this study, a multi-floor layout for the liquefaction process, the dual mixed refrigerant(DMR) cycle, of LNG FPSO was determined by using the optimization technique. For this, an optimization problem for the multi-floor layout was mathematically formulated. The problem consists of 589 design variables representing the positions of topside process systems, 125 equality constraints and 2,315 inequality constraints representing limitations on the layout of them, and an objective function representing the total layout cost. To solve the problem, a hybrid optimization method that consists of the genetic algorithm(GA) and sequential quadratic programming(SQP) was used in this study. As a result, we can obtain a multi-floor layout for the liquefaction process of the LNG FPSO which satisfies all constraints related to limitations on the layout.

Fuzzy Control and Optimization for the Wastewater Treatment Process (퍼지제어기를 이용한 하폐수처리공정의 최적화)

  • 천성표;김봉철;김성신
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.452-455
    • /
    • 2000
  • There are increasingly important financial incentives and environmental consideration to improve the effluent quality of wastewater from domestic and industrial users. The activated sludge process is a widely used biological wastewater treatment process. The activated sludge process is complicated due to the many factors such as the variation of influent flowrate and concentration, the complexity of biological reactions and the various operation conditions. Nowadays, not only suspended solids and residual carbon, but also nitrogen and phosphorous concentration of the effluent water must be taken into account for the design and operation of wastewater treatment plants. Also, the effluent quality to be met are more stringent. Therefore, an intelligent control approach is required in order to successful biological nitrogen removal. In this paper, the strategies for dosage of extra carbon in the anoxic zone and DO concentration in the aerobic zone are presented and evaluated through the simulation using the denitrification layout of the IWA simulation benchmark implemented by Matlab$\^$/5.3/Simulink$\^$/3.0. The control strategy to achieve sufficient denitrification rates in an anoxic zone. Methanol is used as an external extra carbon source. The external extra carbon source is required for the nitrogen removal process because nitrogen and organic concentration are fluctuated in the influent flowrate. The dissolved oxygen is calculated by So concentration in the activated sludge model NO.1. The air flowrate of each aerobic reactor is intelligently controlled to achieve the predefined setpoints. Air flowrate is adjusted by the fuzzy logic controller that includes two inputs and one output. The objective function for the optimization procedure is designed to improve effluent quality and reduce the operating cost.

  • PDF

A correlation method for high-frequency response of a cargo during dry transport in high seas

  • Vinayan, Vimal;Zou, Jun
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.143-159
    • /
    • 2016
  • Cargo, such as a Tension Leg Platform (TLP), Semi-submersible platform (Semi), Spar or a circular Floating Production Storage and Offloading (FPSO), are frequently dry-transported on a Heavy Lift Vessel (HLV) from the point of construction to the point of installation. The voyage can span months and the overhanging portions of the hull can be subject to frequent wave slamming events in rough weather. Tie-downs or sea-fastening are usually provided to ensure the safety of the cargo during the voyage and to keep the extreme responses of the cargo, primarily for the installed equipment and facilities, within the design limits. The proper design of the tie-down is dependent on the accurate prediction of the wave slamming loads the cargo will experience during the voyage. This is a difficult task and model testing is a widely accepted and adopted method to obtain reliable sea-fastening loads and extreme accelerations. However, it is crucial to realize the difference in the inherent stiffness of the instrument that is used to measure the tri-axial sea fastening loads and the prototype design of the tie-downs. It is practically not possible to scale the tri-axial load measuring instrument stiffness to reflect the real tie-down stiffness during tests. A correlation method is required to systematically and consistently account for the stiffness differences and correct the measured results. Direct application of the measured load tends to be conservative and lead to over-design that can reflect on the overall cost and schedule of the project. The objective here is to employ the established correlation method to provide proper high-frequency responses to topsides and hull design teams. In addition, guidance for optimizing tie-down design to avoid damage to the installed equipment, facilities and structural members can be provided.

Application of Concurrent Engineering for Conceptual design of a Future Main Battle Tank (차세대 주력전차의 개념설계를 위한 동시공학의 적용)

  • 김진우;소한균
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.38-60
    • /
    • 1999
  • The main objective of this study is systemization of the technique of ROC quantification and optimization of baseline design by applying CE principle to the acquisition process of a weapon system. QFD and TOA techniques can be employed to a good working example of the conceptual design of a future main battle tank. In this paper, Product Planning Phase, the first phase of four QFD phases, is deployed in terms of eight steps including customer requirements and final product control characteristics. TOA is carried out considering only combat weight. In order to perform combat weight analysis and performance TOA, Preliminary Configuration Synthesis Methodology is used. Preliminary Configuration Synthesis Methodology employs the method of least squares and described linear equations of weight interrelation equation for each component of tank. As a result of QFD based upon the ROC, it was cleared that armor piercing power, main armament, type of ammunition, cruising range, combat weight, armor protection, power loading, threat detection and cost are primary factors influencing design and that combat weight is the most dominant one. The results of TOA based on the combat weight constraint show that 5100 lb reduction was required to satisfy the ROC. The baseline design of a future main battle tank is illustrated with assumption that all phases of QFD are employed to development and production process of subsystems, components, and parts of main battle tank. TOA is applied in iterative process between initial baseline design and ROC. The detailed design of each component is illustrated for a future main battle tank.

  • PDF

Economic evaluation for the re-arrangement of accommodation house in ultra large container ship (초대형 컨테이너선의 거주구역 재배치에 대한 경제성 평가)

  • Im Nam-kyun;Choi Kyong-Soon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.529-536
    • /
    • 2005
  • Recently the building of ultra large container ship are discussed among ship building companies and ship operating company who have a tendency to pursue the advantage of large scale of economy. These tendency will be continued for the time being, if ship-building skill and economical efficiency are available. As the enlargement of container ship size becomes hot issues in ship-building markets, the needs for re-arrangement of accommodation house in large container ship are proposed carefully in some researches. This study examined economical efficiency of re-arrangement of accommodation house in ultra large container ship. The separation between accommodation and engine room is proposed through out drawing works in initial design stage and we examined the merits and demerits of the separation in the view of economical efficiency. The RFR(Required Freight Rate) is considered as the objective function to evaluate the re-designed vessel. The economical benefits are analyzed in the view of ship operator and shipyard respectively.

Region-Based 3D Image Registration Technique for TKR (전슬관절치환술을 위한 3차원 영역기반 영상정합 기술)

  • Key, J.H.;Seo, D.C.;Park, H.S.;Youn, I.C.;Lee, M.K.;Yoo, S.K.;Choi, K.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.6
    • /
    • pp.392-401
    • /
    • 2006
  • Image Guided Surgery (IGS) system which has variously tried in medical engineering fields is able to give a surgeon objective information of operation process like decision making and surgical planning. This information is displayed through 3D images which are acquired from image modalities like CT and MRI for pre-operation. The technique of image registration is necessary to construct IGS system. Image registration means that 3D model and the object operated by a surgeon are matched on the common frame. Major techniques of registration in IGS system have been used by recognizing fiducial markers placed on the object. However, this method has been criticized due to additional trauma, its invasive protocol inserting fiducial markers in patient's bone and generating noise data when 2D slice images are acquired by image modality because many markers are made of metal. Therefore, this paper developed shape-based registration technique to improve the limitation of fiducial marker based IGS system. Iterative Closest Points (ICP) algorithm was used to match corresponding points and quaternion based rotation and translation transformation using closed form solution applied to find the optimized cost function of transformation. we assumed that this algorithm were used in Total Knee replacement (TKR) operation. Accordingly, we have developed region-based 3D registration technique based on anatomical landmarks and this registration algorithm was evaluated in a femur model. It was found that region-based algorithm can improve the accuracy in 3D registration.