• Title/Summary/Keyword: objective cost function

Search Result 465, Processing Time 0.028 seconds

Optimal Road Congestion Pricing under Inter-dependent Market Conditions (Theoretical Review) (상호의존적 교통시장하의 최적 도로혼잡통행료 연구(이론적 고찰))

  • Yun, Jang-Ho;Yeo, Hong-Gu
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.7 s.93
    • /
    • pp.139-148
    • /
    • 2006
  • In order to incorporate substitution effects between different transport modes in optimal road Pricing, relating economic theories and models have been reviewed. It includes unconstrained optimization problem of maximizing separable and non-separable social net benefit functions of different substitutable urban transport modes. In doing that, the problem and limitations such as path-independent conditions with the asymmetric Jacobian of the objective function have been reviewed. Consequently, a plausible way of deriving optimal road price under interdependent market conditions has been suggested so that the idea can help identifying desirable and acceptable urban transport policy alternatives in a more comprehensive way.

A Study on the Optimal Design of Prestressed Concrete Box Girder Bridges (프리스트레스트 콘크리트 박스 거더 교량의 최적 설계에 관한 연구)

  • 노금래;윤희택;박선규
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.251-256
    • /
    • 1999
  • In the preliminary design stage of Prestressed Concrete (PSC) Box Girder Bridges, the design factors(including depth, thickness of web, and jacking force) decided by inexperience designer could heavily affect the final design factors. So there is a possibility that the design ends up with an excessively wasteful design. To aim at an economical design with preventing an excessive design, the optimal design program has been developed by using ADS optimal program and SPCFRAME(PSC Bridge analysis program) in these studies. The optimal design program automatically calculates economically optimized design studies. The optimal design program automatically calculates economically optimized design factors by introducing the optimal design techniques of PSC box girder bridge design. The objective function for optimal design is material cost of box girder and constrained functions are constituted with design specifications and workability. The optimal design techniques used the Sequential Unconstraint Minimization Technique (SUMT) with performing the optimal design program. In this study, We designed unprismatic section bridge and prismatic section bridge in the same design condition by optimal design program developed in this study. By analyzing the results we suggested the practical form of tendon's layout comparing the optimal desingns on the basis of each tendon's layout.

  • PDF

A Study of the Effective Method for Collecting and Analyzing Human Sensibility Applied Fuzzy Set Theory (퍼지이론을 응용한 효율적 감성 수집과 분석에 관한 연구)

  • Baek, Seung-Ryeol;Park, Beom
    • Journal of the Ergonomics Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.47-54
    • /
    • 1998
  • Product design and development is very important process in enterprise activities. Reducing development time and reflecting consumer's needs is required to product design and development for increasing benefit and decreasing cost. Human sensibility ergonomics is one of the important technology of R&D in product development. However, the subjective method of human sensibility ergonomics has several problems to analyze and to Quantify experimental data and objective method of human sensibility ergonomics is still in process on study. In this research, new analyzing method is proposed for the subjective human sensibility ergonomics applied with fuzzy set theory. What is the useful theory for controlling uncertain type of information like human mind? This approach is more effective method for analyzing consumer's needs for product design and development process. At collecting needs, certainty scale is added for adapting hedge of fuzzy function. Using a kind of union operator, synthesize each item to analyze identification of each item with fuzzy hamming distance. Identification of analysis is classified with the relational weight using Relationship Chart Method, and is drawn the relationship diagram for clustering each item. A case study with sample test is conducted and demonstrated with this suggested method for more effective way.

  • PDF

Demosaicing Algorithm Using Directional Neighboring Pixels (근접 화소들의 방향성을 이용한 디모자이킹 알고리듬)

  • Kim, Hee-Chang;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.14 no.6
    • /
    • pp.742-748
    • /
    • 2009
  • Most commercial digital still cameras use a single sensor array (e.g., CMOS or CCD) with color filter array (CFA) to reduce the cost and size. Since the image obtained with CFA has only one color value per pixel, the demosaicing is needed to acquire missing two color values. Although many demosaicing methods have been proposed, they still have artifacts such as rainbow and zippering artifact. In this paper, we propose the simple demosaicing algorithm using tendency of neighbor pixels with the enhanced weighting function. In the experimental results, our algorithm shows much better subjective qualities of the images than conventional demosaicing algorithm and improves objective qualities.

Topology Optimization of Inner-Wall Stiffener for Critical Buckling Loads of Cylindrical Containers (임계좌굴하중을 고려한 원통형 용기 내부 벽면 보강격자의 위상최적설계)

  • Youn Sung-Kie;Yeon Jeoung-Heum;Chang Su-Young;Yoo loon-Tae;Seo Yu-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.503-510
    • /
    • 2005
  • In this paper, the topology optimization of inner-wall stiffener of cylindrical containers for the use as a rocket fuel tank is presented. Such structures for space mission should have high stiffness against the buck]ins while their weight should be maintained low from the viewpoint of cost and performance. Therefore, in the present work the reciprocal of critical buckling load is adopted as an objective function and the total mass of stiffener is constrained to a prescribed value. Due to the restriction of computational resources a section of cylindrical container is topologically optimized and this result is repeated to obtain the full design. Also, for manufacturability the concept of periodic topology pattern in design domain is newly introduced. In the numerical examples, the results by the proposed approach are investigated and compared with those of isogrid design.

Damage-based optimization of large-scale steel structures

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1119-1139
    • /
    • 2014
  • A damage-based seismic design procedure for steel frame structures is formulated as an optimization problem, in which minimization of the initial construction cost is treated as the objective of the problem. The performance constraint of the design procedure is to achieve "repairable" damage state for earthquake demands that are less severe than the design ground motions. The Park-Ang damage index is selected as the seismic damage measure for the quantification of structural damage. The charged system search (CSS) algorithm is employed as the optimization algorithm to search the optimum solutions. To improve the time efficiency of the solution algorithm, two simplifying strategies are adopted: first, SDOF idealization of multi-story building structures capable of estimating the actual seismic response in a very short time; second, fitness approximation decreasing the number of fitness function evaluations. The results from a numerical application of the proposed framework for designing a twelve-story 3D steel frame structure demonstrate its efficiency in solving the present optimization problem.

Truss structure damage identification using residual force vector and genetic algorithm

  • Nobahari, Mehdi;Ghasemi, Mohammad Reza;Shabakhty, Naser
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.485-496
    • /
    • 2017
  • In this paper, damage detection has been introduced as an optimization problem and a two-step method has been proposed that can detect the location and severity of damage in truss structures precisely and reduce the volume of computations considerably. In the first step, using the residual force vector concept, the suspected damaged members are detected which will result in a reduction in the number of variables and hence a decrease in the search space dimensions. In the second step, the precise location and severity of damage in the members are identified using the genetic algorithm and the results of the first step. Considering the reduced search space, the algorithm can find the optimal points (i.e. the solution for the damage detection problem) with less computation cost. In this step, the Efficient Correlation Based Index (ECBI), that considers the structure's first few frequencies in both damaged and healthy states, is used as the objective function and some examples have been provided to check the efficiency of the proposed method; results have shown that the method is innovatively capable of detecting damage in truss structures.

KNOWLEDGE-BASED BOUNDARY EXTRACTION OF MULTI-CLASSES OBJECTS

  • Park, Hae-Chul;Shin, Ho-Chul;Lee, Jin-Sung;Cho, Ju-Hyun;Kim, Seong-Dae
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1968-1971
    • /
    • 2003
  • We propose a knowledge-based algorithm for extracting an object boundary from low-quality image like the forward looking infrared image. With the multi-classes training data set, the global shape is modeled by multispace KL(MKL)[1] and curvature model. And the objective function for fitting the deformable boundary template represented by the shape model to true boundary in an input image is formulated by Bales rule. Simulation results show that our method has more accurateness in case of multi-classes training set and performs better in the sense of computation cost than point distribution model(PDM)[2]. It works well in distortion under the noise, pose variation and some kinds of occlusions.

  • PDF

Optimal Design of High Temperature Vacuum Furnace Using Thermal Analysis Database (전산 열해석 DB를 이용한 초고온 진공로 최적설계)

  • Li Zhen-Zhe;Park Mee-Young;Byun Yung-Hwan;Lee Chang-Jin;Lee Jae-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.594-601
    • /
    • 2006
  • Optimization study has been carried out to design an energy efficient, high temperature vacuum furnace which satisfies users' design requirements. First of all, the transient temperature distribution and the uniform temperature zone results have been compared with the steady state results to validate the feasibility of using steady state solution when constructing the thermal analysis DB. In order to check the accuracy, the interpolated results using thermal analysis DB have been compared with the computational and the experimental results. In this study, total heat flux is selected as the objective function, and the geometry parameters of vacuum furnace including the thickness of insulator, the heat zone sizes and the interval between heater and insulator are the design variables. The Uniform temperature zone sizes and the wall temperature are imposed as the design constraints. With negligible computational cost a high temperature vacuum furnace which has $40\sim60%$ reduction in total heat flux is designed using thermal analysis DB.

Experimental study on the strength behavior of cement-stabilized sand with recovered carbon black

  • Chhun, Kean Thai;Choo, Hyunwook;Kaothon, Panyabot;Yune, Chan-Young
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.31-38
    • /
    • 2020
  • Soil-cement stabilization is a type of ground improvement method which has been used to improve the engineering properties of soil. The unconfined compression test is the commonly used method to evaluate the quality of the stabilized soil due to its simplicity, reliability, rapidity and cost-effectiveness. The main objective of this study was to evaluate the effect of recovered carbon black (rCB) on the strength characteristic of cement-stabilized sand. Various rCB contents and water to cement ratios (w/c) were examined. The unconfined compression test on stabilized sand with different curing times was also conducted for a reconstituted specimen. From the test result, it was found that the compressive strength of cement-stabilized sand increased with the increase of the rCB content up to 3% and the curing time and with the decrease of the w/c ratio, showing that the optimum rCB concentration of the tested stabilized sand was around 3%. In addition, a prediction equation was suggested in this study for cement-stabilized sand with rCB as a function of the w/c ratio and rCB concentration at 14 and 28 days of curing.