• Title/Summary/Keyword: objective cost function

Search Result 466, Processing Time 0.031 seconds

Development of a Simplified Design Method for LBB Application to Nuclear Piping (원전 배관의 LBB 개념 적용을 위한 간략 설계기법 개발)

  • 허남수;이철형;김영진;석창성;표창률
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.32-41
    • /
    • 1999
  • If the Leak-Before-Break (LBB) concept is applicable to the nuclear piping design, it is not necessary to consider the dynamic effect due to pipe rupture. Therefore, the construction cost can be significantly reduced by eliminating unnecessary pipe whip restraints and jet impingement devices. The objective of this paper is to develop the Piping Evaluation Diagram (PED) for efficient application of LBB concept to piping system at an initial piping design stage. For this purpose, the 3-D finite element analyses were performed to evaluate the crack stability. And the stress-strain curve based on the pipe material tests were used to calculate the detectable leakage crack length. Finally, the present PED which was composed as a function of NOP load and allowable SSE load, was developed for an application of LBB concept to the safety injection and shutdown cooling line in Korean Next Generation Reactor (KNGR).

  • PDF

Combinatorial Optimization Model of Air Strike Packages based on Target Groups (표적군 기반 공격 편대군 조합 최적화 모형)

  • Cho, Sanghyeon;Lee, Moongul;Jang, Youngbai
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.6
    • /
    • pp.386-394
    • /
    • 2016
  • In this research, in order to optimize the multi-objective function effectively, we suggested the optimization model to maximize the total destruction of ground targets and minimize the total damage of aircrafts and cost of air munitions by using goal programming. To satisfy the various variables and constraints of this mathematical model, the concept of air strike package is applied. As a consequence, effective attack can be possible by identifying the prior ground targets more quickly. This study can contribute to maximize the ROK air force's combat power and preservation of high value air asset in the war.

Development of Pipe configuration of Air Conditioner Compressor for Vibration Isolation (진동절연을 위한 에어컨 압축기의 파이프 배열기술 개발)

  • 장한기;구치욱;윤덕원;최영훈
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.795-805
    • /
    • 1999
  • Rubber mounts so called grommets and pipes are two major paths of vibration transmission from a compressor, an important vibration source in an air conditioner, to the whole unit. A procedure of configuring the suction and discharge pipes of the compressor was developed in this paper so as to reduce the vibration transmission through the pipes as well as the grommets. Through investigating the effects of shapes and connecting disrections of pipe elements on vibration transmission, a guideline to configure the pipe layout, which enables to reduce vibration transmission, was proposed. The initial pipe layout by the guideline was optimized with the objective function, minimization of boty vibration transmission and the cost, and with the constraints to yield the final dimensions of the pipes. The procedure not only minimizes the transmitted force to the circumferential devices but enables to eliminate rubber blocks or dampers, which are generally used to avoid resonances of the pipe system.

  • PDF

A Stochastic Partial Backorder Inventory System with a Exponential Backorder Ratio (지수 비재고비율을 갖는 효율적 부분비재고시스템에 관한 연구)

  • Lee, Kang-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • This paper presents a stochastic partial inventory model for the situation in which demand is deterministic, lead time follows normal distribution and backorder ratio during the stockout period decreases exponentially according to the length of backorder period. In this situation, an objective function is formulated to minimize the average annual cost, which is the sum of the ordering, carrying time-proportional backordering, quantity-proportional backordering and lost sales costs. And then the procedure of iterative solution method for the model is developed to find optimal reorder point and order quantity and numerical example to illustrate the proposed method is presented.

  • PDF

Stochastic optimum design criterion of added viscous dampers for buildings seismic protection

  • Marano, Giuseppe Carlo;Trentadue, Francesco;Greco, Rita
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.21-37
    • /
    • 2007
  • In this study a stochastic approach for linear viscous dampers design adopted for seismic protection of buildings is developed. Devices optimal placement into the main structure and their mechanical parameters are attained by means of a reliability-based optimum design criterion, in which an objective function (O.F.) is minimized, subject to a stochastic constraint. The seismic input is modelled by a non stationary modulated Kanai Tajimi filtered stochastic process. Building is represented by means of a plane shear type frame model. The selected criterion for the optimization searches the minimum of the O.F., here assumed to be the cost of the seismic protection, i.e., assumed proportional to the sum of added dampings of each device. The stochastic constraint limits a suitable approximated measure of the structure failure probability, here associated to the maximum interstorey drift crossing over a given threshold limit, related, according with modern Technical Codes, to the required damage control.

Sliding mode control based on neural network for the vibration reduction of flexible structures

  • Huang, Yong-An;Deng, Zi-Chen;Li, Wen-Cheng
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.377-392
    • /
    • 2007
  • A discrete sliding mode control (SMC) method based on hybrid model of neural network and nominal model is proposed to reduce the vibration of flexible structures, which is a robust active controller developed by using a sliding manifold approach. Since the thick boundary layer will reduce the virtue of SMC, the multilayer feed-forward neural network is adopted to model the uncertainty part. The neural network is trained by Levenberg-Marquardt backpropagation. The design objective of the sliding mode surface is based on the quadratic optimal cost function. In course of running, the input signal of SMC come from the hybrid model of the nominal model and the neural network. The simulation shows that the proposed control scheme is very effective for large uncertainty systems.

Energy Supply Systems for $CO_{2}$ Emission Control in Korea : An Application of MARKAL Model ($CO_{2}$ 배출량 저감을 고려한 국내 에너지공급시스템 분석 : 시장분배모형(MAEKAL)의 응용)

  • 신희성;홍종철;강희정
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.18 no.1
    • /
    • pp.79-95
    • /
    • 1993
  • MARKAL (MARKet ALlocation) Model, one of the most sophisticated energy technology assessment model is applied to finding the optimum mix of energy sources and evaluating energy technology competitiveness in Korea. The model is capable of handling Multiple Objective Linear Programming to test the related cost minimization and environmental control function. In this paper three environmental regulation scenarios are observed including 10% and 20% reduction of carbon dioxide emission level. For the purpose of establishing the basic data base, Korea Reference Engergy System is also developed on the base of the year 1989 with technology utilization and energy flow analysis.

  • PDF

Optimal Inventory and Price Markdown Policy for a Two-Layer Market with Demand being Price and Time Dependent

  • Jeon, Seong-Hye;Sung, Chang-Sup
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.142-146
    • /
    • 2006
  • This paper considers a SCM issue concerned with an integrated problem of inventory control and dynamic pricing strategies when demands are price and time dependent. The associated price markdowns are conducted for inventory control in a two-layer market consisting of retailer and outlet as in fashion apparel market. The objective function consists of revenue terms (sales revenue and salvage value) and purchasing cost term. Specifically, decisions on price markdowns and order quantity are made to maximize total profit in the supply chain so as to have zero inventory level at the end of the sales horizon. To solve the proposed problem, a gradient method is applied, which shows an optimal decision on both the initial inventory level and the discount pricing policy. Sensitivity analysis is conducted on the demand parameters and the final comments on the practical use of the proposed model are presented.

  • PDF

A dual approach to input/output variance constrained control problem

  • Kim, Jac-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.28-33
    • /
    • 1994
  • An optimal controller, e.g. LQG controller, may not be realistic in the sense that the required control power may not be achieved by existing actuators, and the measured output is not satisfactory. To be realistic, the controller should meet such constraints as sensor or actuator limitation, performance limit, etc. In this paper, the lnput/Output Variance Constrained (IOVC) control problem will be considered from the viewpoint of mathematical programming. A dual version shall be developed to solve the IOVC control problem, whose objective is to find a stabilizing control law attaining a minimum value of a quadratic cost function subject to the inequality constraint on each input and output variance for a stabilizable and detectable plant. One approach to the constrained optimization problem is to use the Kuhn-Tucker necessary conditions for the optimality and to seek an optimal point by an iterative algorithm. However, since the algorithm uses only the necessary conditions, the convergent point may not be optimal solution. Our algorithm will guarantee a sufficiency.

  • PDF

Optimization of discrete event system in a temporal logic framework (시간논리구조에서 이산사건시스템의 최적화)

  • 황형수;오성권;정용만
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.812-815
    • /
    • 1996
  • In this paper, we consider the optimal control problem based on Discrete Event Dynamic Systems(DEDS) in the Temporal Logic framework(TLF) which have studied for a convenient modeling technique. The TLF is enhanced with objective functions(event cost indices) and a measurement space is also defined. Our research goal is the design of the optimal controller for DEDSs. This procedure could be guided by the heuristic search methods. For the heuristic search, we suggested the Stochastic Ruler algorithm, instead of the A algorithm with difficulties as following; the uniqueness of solutions, the computational complexity and how to select a heuristic function. This SR algorithm is used for solving the optimal problem. An example is shown to illustrate our results.

  • PDF